当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconsideration of the role of hydrogen peroxide in peroxymonocarbonate-based oxidation system for pollutant control
Water Research ( IF 11.4 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.watres.2024.122750
Zihan Yang, Yi Zhou, Yiqian Jiang, Peiqing Zhao, Xu Meng

Advanced oxidation processes that utilize peroxymonocarbonate (HCO4-), generated in-situ through the reaction of HCO3- and H2O2, are employed for the removal of pollutants in water. Nevertheless, the precise role of H2O2 in these processes remains a subject of debate. This study established a HCO4--based oxidation system using NaHCO3 and H2O2 for the degradation of acetaminophen and investigated the activation mechanisms of coexisting oxidants. Under thermal activation conditions, the Osingle bondO bond in HCO4- (HOsingle bondOCOO-) was more readily cleaved than the Osingle bondO bond in the co-existing oxidant H2O2 (HOsingle bondOH), leading to the generation of reactive oxygen species (ROS). Based on kinetics and ROS evaluation, H2O2 primarily served to form HCO4- rather than converting to ·OH or O2, with HCO4- acting as the primary oxidant for degradation through the formation of CO3·and ·OH. In this oxidation system, H2O2 utilization efficiency for ·OH production reached 27.34 %, ·OH yield reached 24.15 % and acetaminophen degradation efficiency realized 83 % at 60 °C with 20 mM HCO3- and 20 mM H2O2. The apparent activation energy of acetaminophen degradation and HCO4- activation were calculated as 90.83 kJ mol-1 and 18.81 kJ mol-1, respectively. Moreover, a novel CO2-derived HCO4--based system led to a comparable acetaminophen degradation efficiency of 82 % and a higher kobs of 0.028 min-1. The system optimization and ROS evaluation suggest that high concentration of H2O2 inhibited the degradation and quenched CO3· and ·OH to yield ·O2- and 1O2. Furthermore, EPR analysis and quenching experiments indicate that CO3· was mainly responsible for acetaminophen degradation. This work provides fundamental understanding of the HCO4--based oxidation system.

中文翻译:


过氧化氢在过氧单碳酸酯基氧化体系中对污染物控制的作用的再思考



利用通过 HCO3- 和 H2O2 反应原位生成的过氧单碳酸酯 (HCO4-) 的高级氧化工艺用于去除水中的污染物。然而,H2O2 在这些过程中的确切作用仍然是一个争论的话题。本研究利用 NaHCO3 和 H2O2 建立了基于 HCO4 的氧化体系,用于降解对乙酰氨基酚,并研究了共存氧化剂的活化机制。在热活化条件下,HCO4- (HO single bond OCOO-) 中的 O single bond O 键比共存的氧化剂 H2O2 (HO single bond OH) 中的 O single bond O 键更容易裂解,从而导致活性氧 (ROS) 的产生。根据动力学和 ROS 评估,H2O2 主要用于形成 HCO4-,而不是转化为 ·OH 或 O2,HCO 4- 作为主要氧化剂,通过生成 CO3··哦。在该氧化系统中,H2O2 的利用效率为 ·OH 产量达到 27.34 %, ·OH 产率达到 24.15 %,对乙酰氨基酚降解效率在 60 °C 下达到 83 %,20 mM HCO3 20 mM H2O2。 计算出对乙酰氨基酚降解和 HCO4- 活化的表观活化能分别为 90.83 kJ mol-1 和 18.81 kJ mol-1。此外,一种基于 CO2 衍生的 HCO4 的新型系统导致相当的对乙酰氨基酚降解效率为 82% 和更高的 kobs 为 0.028 min-1。系统优化和 ROS 评价表明,高浓度的 H2O2 抑制了 CO3··OH 到产量 ·O2-1O2.此外,EPR 分析和猝灭实验表明,CO3· 是导致对乙酰氨基酚降解的主要原因。这项工作提供了对基于 HCO4 的氧化系统的基本理解。
更新日期:2024-11-09
down
wechat
bug