当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microstructure designed flexoelectric materials and tip force for multifunctional applications
Nano Energy ( IF 16.8 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.nanoen.2024.110442 Shengqian Wang, Xin Wang, Wangshu Tong, Xinnan Li, Yihe Zhang
Nano Energy ( IF 16.8 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.nanoen.2024.110442 Shengqian Wang, Xin Wang, Wangshu Tong, Xinnan Li, Yihe Zhang
Flexoelectricity with size-dependent induced polarization under nonuniform stress for high-efficient energy conversion has shown considerable potential in energy harvesting and electronic devices. By introducing material microstructure design and tip-force, the distribution of nonuniform stress can be remarkably enhanced and the flexoelectric performance can be improved. Based on the theoretical explanations and experiment tests of flexoelectric materials, we have reviewed research advances in the strategies for enhancing the flexoelectric effect from microscopic perspectives. Moreover, microscopic methods such as interface, defect, ultrathin material and tip-induced effects have effectively enhanced the flexoelectric effect. This review has emphasized on the use of flexoelectric materials developed using the microstructure design approach for use in nanogenerators, flexoelectronics, flexocatalysis, and biomedicine, particularly the in situ electric energy. Finally, challenges involved in further enhancing the flexoelectric performance and expanding the applications of such materials based on the microstructure design have been presented. This review is expected to promote the development of flexoelectric materials in flexible wearable electronic devices, bionic materials, intelligent soft-bodied robots, and weak-force-driven catalysis.
中文翻译:
微结构设计了适用于多功能应用的柔性电材料和尖端力
在非均匀应力下具有尺寸依赖性感应极化的挠曲电技术用于高效能量转换,在能量收集和电子设备中显示出相当大的潜力。通过引入材料微观结构设计和尖端力,可以显着增强非均匀应力的分布,并改善挠曲电性能。基于挠曲电材料的理论解释和实验测试,我们从微观角度综述了增强挠曲电效应的策略的研究进展。此外,界面、缺陷、超薄材料和尖端诱导效应等微观方法有效地增强了挠曲电效应。本综述强调了使用微结构设计方法开发的柔性电材料的使用,用于纳米发电机、柔性电子学、柔性催化和生物医学,特别是原位电能。最后,提出了进一步提高挠曲电性能和扩大基于微观结构设计的此类材料的应用所涉及的挑战。本文有望促进柔性可穿戴电子器件、仿生材料、智能软体机器人和弱力驱动催化中柔性电材料的发展。
更新日期:2024-11-05
中文翻译:
微结构设计了适用于多功能应用的柔性电材料和尖端力
在非均匀应力下具有尺寸依赖性感应极化的挠曲电技术用于高效能量转换,在能量收集和电子设备中显示出相当大的潜力。通过引入材料微观结构设计和尖端力,可以显着增强非均匀应力的分布,并改善挠曲电性能。基于挠曲电材料的理论解释和实验测试,我们从微观角度综述了增强挠曲电效应的策略的研究进展。此外,界面、缺陷、超薄材料和尖端诱导效应等微观方法有效地增强了挠曲电效应。本综述强调了使用微结构设计方法开发的柔性电材料的使用,用于纳米发电机、柔性电子学、柔性催化和生物医学,特别是原位电能。最后,提出了进一步提高挠曲电性能和扩大基于微观结构设计的此类材料的应用所涉及的挑战。本文有望促进柔性可穿戴电子器件、仿生材料、智能软体机器人和弱力驱动催化中柔性电材料的发展。