当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Gear-fault monitoring and digital twin demonstration of aircraft engine based on piezoelectric vibration sensor for engine health management
Nano Energy ( IF 16.8 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.nanoen.2024.110448 Yijian Hu, Rui Guo, Han Wang, Ruihao Zhao, Rihai Ning, Zhiquan Huang, Zhibing Chu, Yan Peng, Yang Zhang, Hulin Zhang
Nano Energy ( IF 16.8 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.nanoen.2024.110448 Yijian Hu, Rui Guo, Han Wang, Ruihao Zhao, Rihai Ning, Zhiquan Huang, Zhibing Chu, Yan Peng, Yang Zhang, Hulin Zhang
Aircraft engine vibration signals carry crucial operational information, necessitating accurate monitoring and analysis to ensure flight safety. However, the detection accuracy of vibration sensors is significantly compromised in high-temperature environments, posing substantial challenges for traditional battery-powered models. Here, we present a self-powered piezoelectric vibration sensor based on a polyvinylidene fluoride-polyimide nanofiber membrane, which can effectively mitigate the performance degradation in high-temperature environments. The piezoelectric vibration sensor is capable of distinguishing the vibration signals generated by healthy gears, pitting gears, and broken gears, achieving a recognition accuracy of 96.3 % by using machine-learning algorithms. Finally, we develop a digital twin system to identify failure modes in aircraft engine gears, promising intelligent engine health management.
中文翻译:
基于压电振动传感器的飞机发动机齿轮故障监测与数字孪生示范,用于发动机健康管理
飞机发动机振动信号携带关键的运行信息,需要准确监测和分析以确保飞行安全。然而,振动传感器的检测精度在高温环境中会受到严重影响,这对传统的电池供电模型构成了巨大的挑战。在这里,我们提出了一种基于聚偏二氟乙烯-聚酰亚胺纳米纤维膜的自供电压电振动传感器,它可以有效缓解高温环境下的性能下降。压电式振动传感器能够区分健康齿轮、点蚀齿轮和破齿轮产生的振动信号,通过使用机器学习算法实现 96.3% 的识别准确率。最后,我们开发了一个数字孪生系统来识别飞机发动机齿轮的故障模式,有望实现智能发动机健康管理。
更新日期:2024-11-04
中文翻译:
基于压电振动传感器的飞机发动机齿轮故障监测与数字孪生示范,用于发动机健康管理
飞机发动机振动信号携带关键的运行信息,需要准确监测和分析以确保飞行安全。然而,振动传感器的检测精度在高温环境中会受到严重影响,这对传统的电池供电模型构成了巨大的挑战。在这里,我们提出了一种基于聚偏二氟乙烯-聚酰亚胺纳米纤维膜的自供电压电振动传感器,它可以有效缓解高温环境下的性能下降。压电式振动传感器能够区分健康齿轮、点蚀齿轮和破齿轮产生的振动信号,通过使用机器学习算法实现 96.3% 的识别准确率。最后,我们开发了一个数字孪生系统来识别飞机发动机齿轮的故障模式,有望实现智能发动机健康管理。