当前位置: X-MOL 学术Acc. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Data-Driven Combinatorial Design of Highly Energetic Materials
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-11-04 , DOI: 10.1021/accountsmr.4c00230
Linyuan Wen, Yinglei Wang, Yingzhe Liu

In this Account, we present a comprehensive overview of recent advancements in applying data-driven combinatorial design for developing novel high-energy-density materials. Initially, we outline the progress in energetic materials (EMs) development within the framework of the four scientific paradigms, with particular emphasis on the opportunities afforded by the evolution of computer and data science, which has propelled the theoretical design of EMs into a new era of data-driven development. We then discuss the structural features of typical EMs such as TNT, RDX, HMX, and CL-20, namely, a “scaffolds + functional groups” characteristic, underscoring the efficacy of the combinatorial design approach in constructing novel EMs. It has been discerned that those modifications to the scaffolds are the primary driving force behind the enhancement of EMs’ properties.

中文翻译:


高能材料的数据驱动组合设计



在本专题中,我们全面概述了应用数据驱动组合设计开发新型高能量密度材料的最新进展。最初,我们概述了含能材料 (EMs) 在四种科学范式框架内的发展进展,特别强调了计算机和数据科学的发展所带来的机会,这推动了含能材料 (EMs) 的理论设计进入数据驱动发展的新时代。然后,我们讨论了 TNT、RDX、HMX 和 CL-20 等典型 EMs 的结构特征,即“支架 + 官能团”特征,强调了组合设计方法在构建新型 EM 中的有效性。已经发现,对支架的这些修改是增强 EM 性能的主要驱动力。
更新日期:2024-11-08
down
wechat
bug