当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Atmosphere-driven metal-support synergy in ZnO/Au catalysts for efficient piezo-catalytic hydrogen evolution
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.jmat.2024.100959 Di Wu, Yingxin He, Chi Lin, Bing Li, Jiangping Ma, Lujie Ruan, Yajie Feng, Chaogang Ban, Junjie Ding, Xiaoxing Wang, Danmei Yu, Li-Yong Gan, Xiaoyuan Zhou
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.jmat.2024.100959 Di Wu, Yingxin He, Chi Lin, Bing Li, Jiangping Ma, Lujie Ruan, Yajie Feng, Chaogang Ban, Junjie Ding, Xiaoxing Wang, Danmei Yu, Li-Yong Gan, Xiaoyuan Zhou
Piezo-catalysis, which leverages mechanical energy to drive chemical reactions, is emerging as a promising method for sustainable energy production. While the enhancement of piezo-catalytic performance through metal-support interactions is well-documented, the critical influence of the synthesis atmosphere during metal-loaded piezo-catalyst preparation has been a notable gap in the field. To this end, we systematically investigate how different atmospheric conditions during the synthesis of catalysts—without gas flow or with Ar, N2 and O2—affect metal dispersion, oxidation states, piezo-carrier dynamics, and electronic structure, and subsequently shape the metal-support interactions and piezo-catalytic activity. ZnO/Au, with Au deposited on ZnO, is selected as the model system, and hydrogen evolution reaction is used as the probe reaction. Our results demonstrate that an oxygen-enriched atmosphere significantly enhances the metal-support interactions, achieving an ultrahigh net hydrogen yield of 16.5 mmol·g–1·h–1 on ZnO/Au, a 3.58-fold increase over pristine ZnO. Specifically, the performance improvements substantially surpass those synthesized under other atmospheric conditions. Conversely, exposure to CO2 transforms the ZnO support into ZnCO3, adversely affecting its catalytic activity. These findings reveal the crucial impact of synthesis conditions on piezo-catalyst performance and thereby open new avenues for optimizing catalyst systems for enhanced sustainability.
中文翻译:
ZnO/Au 催化剂中气氛驱动的金属载体协同作用,用于高效的压电催化析氢
压电催化利用机械能驱动化学反应,正在成为一种很有前途的可持续能源生产方法。虽然通过金属-载体相互作用增强压电催化性能有据可查,但在金属负载压电催化剂制备过程中合成气氛的关键影响一直是该领域的一个显着差距。为此,我们系统地研究了催化剂合成过程中的不同大气条件(无气流或有 Ar、N2 和 O2)如何影响金属分散、氧化态、压电载流子动力学和电子结构,并随后塑造金属-载体相互作用和压电催化活性。选择将 Au 沉积在 ZnO 上的 ZnO/Au 作为模型体系,以析氢反应作为探针反应。我们的结果表明,富氧气氛显着增强了金属与载体的相互作用,在 ZnO/Au 上实现了 16.5 mmol·g–1·h–1 的超高净氢产率,比原始 ZnO 高出 3.58 倍。具体来说,性能改进大大超过了在其他大气条件下合成的性能改进。相反,暴露于 CO2 会将 ZnO 负载物转化为 ZnCO3,从而对其催化活性产生不利影响。这些发现揭示了合成条件对压电催化剂性能的关键影响,从而为优化催化剂系统以提高可持续性开辟了新的途径。
更新日期:2024-11-05
中文翻译:
ZnO/Au 催化剂中气氛驱动的金属载体协同作用,用于高效的压电催化析氢
压电催化利用机械能驱动化学反应,正在成为一种很有前途的可持续能源生产方法。虽然通过金属-载体相互作用增强压电催化性能有据可查,但在金属负载压电催化剂制备过程中合成气氛的关键影响一直是该领域的一个显着差距。为此,我们系统地研究了催化剂合成过程中的不同大气条件(无气流或有 Ar、N2 和 O2)如何影响金属分散、氧化态、压电载流子动力学和电子结构,并随后塑造金属-载体相互作用和压电催化活性。选择将 Au 沉积在 ZnO 上的 ZnO/Au 作为模型体系,以析氢反应作为探针反应。我们的结果表明,富氧气氛显着增强了金属与载体的相互作用,在 ZnO/Au 上实现了 16.5 mmol·g–1·h–1 的超高净氢产率,比原始 ZnO 高出 3.58 倍。具体来说,性能改进大大超过了在其他大气条件下合成的性能改进。相反,暴露于 CO2 会将 ZnO 负载物转化为 ZnCO3,从而对其催化活性产生不利影响。这些发现揭示了合成条件对压电催化剂性能的关键影响,从而为优化催化剂系统以提高可持续性开辟了新的途径。