当前位置:
X-MOL 学术
›
Acta Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing thermal stability of Nb nanowires in a NiTiFe matrix via texture engineering
Acta Materialia ( IF 8.3 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.actamat.2024.120525 Yuxuan Chen, Yang Li, Suoqing Yu, Junsong Zhang, Shan Huang, Feihong Chu, Xiaobin Shi, Kaixuan Li, Zishu Lian, Daqiang Jiang, Yang Ren, Lishan Cui, Kaiyuan Yu
Acta Materialia ( IF 8.3 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.actamat.2024.120525 Yuxuan Chen, Yang Li, Suoqing Yu, Junsong Zhang, Shan Huang, Feihong Chu, Xiaobin Shi, Kaixuan Li, Zishu Lian, Daqiang Jiang, Yang Ren, Lishan Cui, Kaiyuan Yu
Metallic nanowires, renowned for their high strength and large elastic strain limits, have shown significant potential in rendering extraordinary structural and functional properties in composites. However, their integrity at high temperatures is often compromised due to fragmentation and spheroidization, processes driven by excess interfacial energy. Here, we demonstrate in a NiTiFe/Nb nanocomposite that the fragmentation and spheroidization of Nb nanowires can be significantly suppressed by tailoring the interfacial crystallographic orientation relationship between the nanowires and the matrix. By doping Fe into NiTi, we inhibit the typical deformation-induced amorphization of the NiTi-based matrix during severe deformation processing. The common (111)NiTi //(110)Nb texture is inherently suppressed and (110)NiTiFe //(110)Nb texture is formed instead. Such a change in texture allows Nb nanowires to retain their integrity up to 700 °C in the NiTiFe matrix, in contrast to the 550 °C in the counterparts. Simulation results indicate that the enhanced thermal stability of Nb nanowires is attributed to the reduced interfacial energy between (110)NiTiFe and (110)Nb . Additionally, Fe doping elevates the migration energy barrier for Nb diffusion, imposing further resistance to fragmentation and spheroidization.
中文翻译:
通过织构工程增强 NiTiFe 基体中 Nb 纳米线的热稳定性
金属纳米线以其高强度和大弹性应变极限而闻名,在复合材料中表现出非凡的结构和功能特性方面显示出巨大的潜力。然而,它们在高温下的完整性往往会因碎裂和球化而受到影响,这些过程是由过量的界面能驱动的。在这里,我们在 NiTiFe/Nb 纳米复合材料中证明,通过调整纳米线和基体之间的界面晶体取向关系,可以显着抑制 Nb 纳米线的碎裂和球化。通过将 Fe 掺杂到 NiTi 中,我们抑制了严重变形加工过程中 NiTi 基体的典型变形诱导的非晶化。常见的 (111)NiTi//(110)Nb 织构本质上被抑制,而是形成 (110)NiTiFe//(110)Nb 织构。这种质地变化使 Nb 纳米线在 NiTiFe 基体中仍能保持其完整性,最高可达 700 °C,而同类纳米线的完整性为 550 °C。模拟结果表明,Nb 纳米线的热稳定性增强归因于 (110)NiTiFe 和 (110)Nb 之间的界面能降低。此外,Fe 掺杂提高了 Nb 扩散的迁移能垒,进一步抵抗碎裂和球化。
更新日期:2024-11-04
中文翻译:
通过织构工程增强 NiTiFe 基体中 Nb 纳米线的热稳定性
金属纳米线以其高强度和大弹性应变极限而闻名,在复合材料中表现出非凡的结构和功能特性方面显示出巨大的潜力。然而,它们在高温下的完整性往往会因碎裂和球化而受到影响,这些过程是由过量的界面能驱动的。在这里,我们在 NiTiFe/Nb 纳米复合材料中证明,通过调整纳米线和基体之间的界面晶体取向关系,可以显着抑制 Nb 纳米线的碎裂和球化。通过将 Fe 掺杂到 NiTi 中,我们抑制了严重变形加工过程中 NiTi 基体的典型变形诱导的非晶化。常见的 (111)NiTi//(110)Nb 织构本质上被抑制,而是形成 (110)NiTiFe//(110)Nb 织构。这种质地变化使 Nb 纳米线在 NiTiFe 基体中仍能保持其完整性,最高可达 700 °C,而同类纳米线的完整性为 550 °C。模拟结果表明,Nb 纳米线的热稳定性增强归因于 (110)NiTiFe 和 (110)Nb 之间的界面能降低。此外,Fe 掺杂提高了 Nb 扩散的迁移能垒,进一步抵抗碎裂和球化。