当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel Cu/Fe cathode prepared by a facile redox pathway for phenol degradation electrocatalytically via the electro-fenton assisted electro-chlorination process
Water Research ( IF 11.4 ) Pub Date : 2024-11-03 , DOI: 10.1016/j.watres.2024.122744
YeXin Liang, Mingzhe Yuan, Haimei Cheng, Haiqin Lv, Lei Zhao, JiaLi Tang, Yong Feng, Ying Huang, Qingguo Meng

Electrochemical methods for treating phenolic wastewater have been widely studied, with most research focusing primarily on the anode, while the cathode has generally served as a counter electrode. This study aims to enhance the electrocatalytic process by developing a new Fe/Cu-based cathode using a simple redox method. We created a CuOsingle bondCu@Fe-Fe2O3-x (0 < x < 1, combining Fe2O3 and FeO) electrode, referred to as CCFFO, to facilitate the electro-Fenton process without requiring additional H2O2 or Fe2+. In our electrolysis system with NaCl as the electrolyte for electro-chlorination process, phenol concentration was reduced from 100 mg/L to below 0.5 mg/L within 10 min. Optimal experimental conditions were determined by evaluating various parameters such as chloride electrolyte concentration, current density, electrode plate spacing, aeration, pH, and cathode types. Additionally, the role of chloride ions in phenol degradation was investigated through free radical quenching experiments. A 500-hour continuous flow experiment demonstrated the durability of the CCFFO cathode. GC/MS analysis identified intermediates formed during phenol degradation and the underlying catalytic mechanism was explored. The results indicate that the electro-chlorination process at the anode is the primary driver of phenol degradation, assisted by the electro-Fenton process on the CCFFO cathode. The CCFFO cathode effectively prevents the production of harmful by-products like perchlorate. The degradation efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 63.5 % and 80.25 %, respectively. Achieving a phenol degradation efficiency of 99.5 % within 10 min, the CCFFO cathode and electrolytic system show significant potential for wastewater treatment applications.

中文翻译:


一种新型 Cu/Fe 阴极,通过简单的氧化还原途径制备,用于通过电芬顿辅助电解氯化工艺电催化降解苯酚



处理酚类废水的电化学方法已被广泛研究,大多数研究主要集中在阳极上,而阴极通常用作对电极。本研究旨在通过使用简单的氧化还原法开发一种新的 Fe/Cu 基阴极来增强电催化过程。我们创建了一个 CuO single bond Cu@Fe-Fe2O3-x(0 < x < 1,结合了 Fe2O3 和 FeO)电极,称为 CCFFO,以促进电芬顿过程,而无需额外的 H2O2 或 Fe2+。在我们以 NaCl 作为电解液进行电解氯化过程的电解系统中,苯酚浓度在 10 分钟内从 100 mg/L 降低到 0.5 mg/L 以下。通过评估各种参数(如氯离子电解质浓度、电流密度、电极板间距、曝气、pH 值和阴极类型)来确定最佳实验条件。此外,通过自由基淬灭实验研究了氯离子在苯酚降解中的作用。500 小时的连续流实验证明了 CCFFO 阴极的耐用性。GC/MS 分析确定了苯酚降解过程中形成的中间体,并探讨了潜在的催化机制。结果表明,阳极的电氯化过程是苯酚降解的主要驱动因素,CCFFO 阴极上的电 Fenton 过程辅助。CCFFO 阴极可有效防止高氯酸盐等有害副产物的产生。化学需氧量 (COD) 和总有机碳 (TOC) 的降解效率分别为 63.5 % 和 80.25 %。实现 99 的苯酚降解效率。5% 在 10 分钟内,CCFFO 阴极和电解系统显示出在废水处理应用中的巨大潜力。
更新日期:2024-11-03
down
wechat
bug