当前位置:
X-MOL 学术
›
J. Am. Coll. Cardiol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Artificial Intelligence in Cardiovascular Clinical Trials
Journal of the American College of Cardiology ( IF 21.7 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.jacc.2024.08.069 Jonathan W. Cunningham, William T. Abraham, Ankeet S. Bhatt, Jessilyn Dunn, G. Michael Felker, Sneha S. Jain, Christopher J. Lindsell, Matthew Mace, Trejeeve Martyn, Rashmee U. Shah, Geoffrey H. Tison, Tala Fakhouri, Mitchell A. Psotka, Harlan Krumholz, Mona Fiuzat, Christopher M. O’Connor, Scott D. Solomon
Journal of the American College of Cardiology ( IF 21.7 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.jacc.2024.08.069 Jonathan W. Cunningham, William T. Abraham, Ankeet S. Bhatt, Jessilyn Dunn, G. Michael Felker, Sneha S. Jain, Christopher J. Lindsell, Matthew Mace, Trejeeve Martyn, Rashmee U. Shah, Geoffrey H. Tison, Tala Fakhouri, Mitchell A. Psotka, Harlan Krumholz, Mona Fiuzat, Christopher M. O’Connor, Scott D. Solomon
Randomized clinical trials are the gold standard for establishing the efficacy and safety of cardiovascular therapies. However, current pivotal trials are expensive, lengthy, and insufficiently diverse. Emerging artificial intelligence (AI) technologies can potentially automate and streamline clinical trial operations. This review describes opportunities to integrate AI throughout a trial’s life cycle, including designing the trial, identifying eligible patients, obtaining informed consent, ascertaining physiological and clinical event outcomes, interpreting imaging, and analyzing or disseminating the results. Nevertheless, AI poses risks, including generating inaccurate results, amplifying biases against underrepresented groups, and violating patient privacy. Medical journals and regulators are developing new frameworks to evaluate AI research tools and the data they generate. Given the high-stakes role of randomized trials in medical decision making, AI must be integrated carefully and transparently to protect the validity of trial results.
中文翻译:
人工智能在心血管临床试验中的应用
随机临床试验是确定心血管疗法疗效和安全性的金标准。然而,目前的关键试验费用高昂、耗时长且缺乏多样性。新兴的人工智能 (AI) 技术有可能自动化和简化临床试验运营。本综述描述了在试验的整个生命周期中整合人工智能的机会,包括设计试验、确定符合条件的患者、获得知情同意、确定生理和临床事件结果、解释成像以及分析或传播结果。然而,AI 也带来了风险,包括生成不准确的结果、放大对代表性不足群体的偏见以及侵犯患者隐私。医学期刊和监管机构正在开发新的框架来评估 AI 研究工具及其生成的数据。鉴于随机试验在医疗决策中的高风险作用,必须仔细、透明地整合 AI 以保护试验结果的有效性。
更新日期:2024-11-04
中文翻译:
人工智能在心血管临床试验中的应用
随机临床试验是确定心血管疗法疗效和安全性的金标准。然而,目前的关键试验费用高昂、耗时长且缺乏多样性。新兴的人工智能 (AI) 技术有可能自动化和简化临床试验运营。本综述描述了在试验的整个生命周期中整合人工智能的机会,包括设计试验、确定符合条件的患者、获得知情同意、确定生理和临床事件结果、解释成像以及分析或传播结果。然而,AI 也带来了风险,包括生成不准确的结果、放大对代表性不足群体的偏见以及侵犯患者隐私。医学期刊和监管机构正在开发新的框架来评估 AI 研究工具及其生成的数据。鉴于随机试验在医疗决策中的高风险作用,必须仔细、透明地整合 AI 以保护试验结果的有效性。