当前位置:
X-MOL 学术
›
Struct. Equ. Model.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Addressing Missing Data in Latent Class Analysis When Using a Three-Step Estimation Approach
Structural Equation Modeling: A Multidisciplinary Journal ( IF 2.5 ) Pub Date : 2024-10-29 , DOI: 10.1080/10705511.2024.2410240 Sarah Depaoli, Fan Jia, Marieke Visser
Structural Equation Modeling: A Multidisciplinary Journal ( IF 2.5 ) Pub Date : 2024-10-29 , DOI: 10.1080/10705511.2024.2410240 Sarah Depaoli, Fan Jia, Marieke Visser
This study specifically focuses on addressing the challenges related to employing missing data techniques when estimating a conditional Latent Class Analysis (LCA) model. In the context of a condit...
中文翻译:
使用三步估计方法解决潜在类别分析中的缺失数据
本研究特别侧重于解决在估计条件潜在类别分析 (LCA) 模型时与采用缺失数据技术相关的挑战。在 condit 的上下文中...
更新日期:2024-10-29
中文翻译:
使用三步估计方法解决潜在类别分析中的缺失数据
本研究特别侧重于解决在估计条件潜在类别分析 (LCA) 模型时与采用缺失数据技术相关的挑战。在 condit 的上下文中...