Light: Science & Applications ( IF 20.6 ) Pub Date : 2024-11-05 , DOI: 10.1038/s41377-024-01630-y Hong-Hua Fang, Xiao-Jie Wang, Xavier Marie, Hong-Bo Sun
Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.
中文翻译:
范德华层状材料中具有光学可及自旋缺陷的量子传感
量子传感已成为一种强大的技术,可以非常精确地检测和测量物理和化学参数。其中一种方法是在固态材料中使用光学活性自旋缺陷。这些缺陷充当传感器,近年来取得了重大进展,特别是在二维 (2D) 自旋缺陷领域。在本文中,我们重点介绍了在范德华 (vdW) 材料中使用自旋缺陷的量子传感的最新趋势。我们讨论了将光学可寻址的自旋缺陷与 2D vdW 材料相结合的好处,同时强调了利用这些缺陷的挑战和机遇。为了使量子传感实用和适用,本文确定了一些值得进一步探索的领域。这些应用包括识别具有适合量子传感特性的自旋缺陷,通过控制其空间定位按需生成量子缺陷,了解层厚度和界面对量子传感的影响,以及将自旋缺陷与光子结构集成以获得新功能和更高的发射率。本文探讨了量子传感在多个领域的潜在应用,例如超导性、铁磁性、二维纳米电子学和生物学。例如,将纳米级微流体技术与纳米孔和量子传感相结合可能会带来一个新的 DNA 测序平台。随着材料技术的不断发展和缺陷工程技术的进步,2D 自旋缺陷有望在量子传感中发挥至关重要的作用。