当前位置: X-MOL 学术Clin. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimating Reference Change Values Using Routine Patient Data: A Novel Pathology Database Approach
Clinical Chemistry ( IF 7.1 ) Pub Date : 2024-11-04 , DOI: 10.1093/clinchem/hvae166
Eirik Åsen Røys, Kristin Viste, Ralf Kellmann, Nora Alicia Guldhaug, Bashir Alaour, Marit Sverresdotter Sylte, Janniche Torsvik, Heidi Strand, Michael Marber, Torbjørn Omland, Elvar Theodorsson, Graham Ross Dallas Jones, Kristin Moberg Aakre

Background The reference change value (RCV) is calculated by combining the within-subject biological variation (CVI) and local analytical variation (CVA). These calculations do not account for the variation seen in preanalytical conditions in routine practice or CVI in patients presenting for treatment. As a result, the RCVs may not reflect routine practice or align with clinicians’ experiences. We propose a novel RCV approach based on routine patient data that is potentially more clinically relevant. Methods This study used the refineR algorithm to determine RCVs using serial patient data extracted from a local Laboratory Information System (LIS). The model was applied to biomarkers with a range of result ratio distributions varying from normal to log-normal. Results were compared against conventional formula-based RCVs using CVI estimates from a state-of-the-art biological variation study. Monte Carlo simulations were also used to validate the LIS data approach. Results The RCVs estimated from LIS data were: 11-deoxycortisol (men): −70%/+196%, 17-hydroxyprogesterone (men): −49%/+100%, albumin: −10%/+11%, androstenedione (men): −47%/+96%, cortisol (men): −54%/+51%, cortisone (men): −32%/+51%, creatinine: −16%/+14%, phosphate (women): −23%/+29%, phosphate (men): −27%/+29%, testosterone (men): −38%/+60%. The formula-based RCV estimates showed similar but slightly lower results, and the Monte Carlo simulations confirmed the applicability of the new approach. Conclusions RCVs may be estimated from patient results without prior assumptions about the shape of the ratios between serial results. Laboratories can determine RCVs based on local practice and population.

中文翻译:


使用常规患者数据估计参考变化值:一种新的病理学数据库方法



背景 参考变化值 (RCV) 是通过结合受试者内生物变异 (CVI) 和局部分析变异 (CVA) 来计算的。这些计算没有考虑常规实践中分析前条件或接受治疗的患者的 CVI 的变化。因此,RCV 可能无法反映常规实践或与临床医生的经验不一致。我们提出了一种基于常规患者数据的新型 RCV 方法,该方法可能更具临床相关性。方法 本研究使用 refineR 算法使用从当地实验室信息系统 (LIS) 提取的系列患者数据来确定 RCV。该模型应用于结果比分布范围从正常到对数正态的生物标志物。使用来自最先进生物变异研究的 CVI 估计将结果与传统的基于公式的 RCV 进行比较。蒙特卡洛模拟也用于验证 LIS 数据方法。结果根据 LIS 数据估计的 RCV 为:11-脱氧皮质醇(男性):-70%/+196%,17-羟孕酮(男性):-49%/+100%,白蛋白:-10%/+11%,雄烯二酮(男性):-47%/+96%,皮质醇(男性):-54%/+51%,可的松(男性):-32%/+51%,肌酐:-16%/+14%,磷酸盐(女性):-23%/+29%,磷酸盐(男性):-27%/+29%,睾酮(男性):-38%/+60%。基于公式的 RCV 估计结果相似但略低,蒙特卡洛模拟证实了新方法的适用性。结论 RCV 可以根据患者结果进行估计,而无需事先假设系列结果之间的比率形状。实验室可以根据当地实践和人群确定 RCV。
更新日期:2024-11-04
down
wechat
bug