当前位置: X-MOL 学术J. Geophys. Res. Solid Earth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Rupture Modeling of Large Earthquake Scenarios at the Hellenic Arc Toward Physics-Based Seismic and Tsunami Hazard Assessment
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2024-11-02 , DOI: 10.1029/2024jb029320
Sara Aniko Wirp, Alice-Agnes Gabriel, Thomas Ulrich, Stefano Lorito

The Mediterranean Hellenic Arc subduction zone (HASZ) has generated several MW${\mathrm{M}}_{W}\ge $8 earthquakes and tsunamis. Seismic-probabilistic tsunami hazard assessment typically utilizes uniform or stochastic earthquake models, which may not represent dynamic rupture and tsunami generation complexity. We present an ensemble of ten 3D dynamic rupture earthquake scenarios for the HASZ, utilizing a realistic slab geometry. Our simplest models use uniform along-arc pre-stresses or a single circular initial stress asperity. We then introduce progressively more complex models varying initial shear stress along-arc, multiple asperities based on scale-dependent critical slip weakening distance, and a most complex model blending all aforementioned heterogeneities. Thereby, regional initial conditions are constrained without relying on detailed geodetic locking models. Varying epicentral locations in the simplest, homogeneous model leads to different rupture speeds and moment magnitudes. We observe dynamic fault slip penetrating the shallow slip-strengthening region and affecting seafloor uplift. Off-fault plastic deformation can double vertical seafloor uplift. A single-asperity model generates a MW${\mathrm{M}}_{W}\sim $8 scenario resembling the 1303 Crete earthquake. Using along-strike varying initial stresses results in MW${\mathrm{M}}_{W}\sim $8.0–8.5 dynamic rupture scenarios with diverse slip rates and uplift patterns. The model with the most heterogeneous initial conditions yields a MW${\mathrm{M}}_{W}\sim $7.5 scenario. Dynamic rupture complexity in prestress and fracture energy tends to lower earthquake magnitude but enhances tsunamigenic displacements. Our results offer insights into the dynamics of potential large Hellenic Arc megathrust earthquakes and may inform future physics-based joint seismic and tsunami hazard assessments.

中文翻译:


希腊弧大型地震情景的动态破裂建模,面向基于物理的地震和海啸灾害评估



地中海希腊弧俯冲带 (HASZ) 已经产生了几次 MW${\mathrm{M}}_{W}\ge $8 地震和海啸。地震概率海啸灾害评估通常使用均匀或随机地震模型,这些模型可能无法代表动态破裂和海啸生成的复杂性。我们利用逼真的板几何结构,为 HASZ 提供了 10 个 3D 动态破裂地震情景的集合。我们最简单的模型使用均匀的沿弧预应力或单个圆形初始应力凹凸。然后,我们引入了逐渐更复杂的模型,沿弧改变初始剪切应力,基于尺度依赖临界滑移弱化距离的多重凹凸,以及混合了所有上述非均质性的最复杂模型。因此,区域初始条件受到约束,而不依赖于详细的大地锁定模型。在最简单、均匀的模型中,不同的震中位置会导致不同的破裂速度和力矩大小。我们观察到动态断层滑移穿透浅层滑移加强区并影响海底隆起。断层外塑性变形可以使垂直海底隆起加倍。单凹凸模型生成类似于 1303 年克里特岛地震的 MW${\mathrm{M}}_{W}\sim $8 情景。使用沿走向变化的初始应力会导致 MW${\mathrm{M}}_{W}\sim $8.0–8.5 动态破裂场景,具有不同的滑移率和隆起模式。 具有最异构初始条件的模型产生了 MW${\mathrm{M}}_{W}\sim $7.5 情景。预应力和断裂能量的动态破裂复杂性往往会降低地震震级,但会增加海啸引起的位移。我们的结果为潜在的大型希腊弧巨型推力地震的动力学提供了见解,并可能为未来基于物理的联合地震和海啸灾害评估提供信息。
更新日期:2024-11-03
down
wechat
bug