当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biomass-based shape-stabilized phase change materials for thermal energy storage and multiple energy conversion
Nano Energy ( IF 16.8 ) Pub Date : 2024-11-03 , DOI: 10.1016/j.nanoen.2024.110440 Yingying Tian, Ruiying Yang, Haokun Pan, Nannan Zheng, Xiubing Huang
Nano Energy ( IF 16.8 ) Pub Date : 2024-11-03 , DOI: 10.1016/j.nanoen.2024.110440 Yingying Tian, Ruiying Yang, Haokun Pan, Nannan Zheng, Xiubing Huang
Phase change materials (PCMs) in solid-liquid form have the benefits of minimal volume alteration, high energy storage capacity, and appropriate phase transition temperature. They are capable of releasing and storing latent heat in a reversible manner to facilitate the storage and use of thermal energy during the transition process. However, solid-liquid PCMs still face some challenges, such as easy leakage in the molten state, low thermal conductivity and single function. To solve and avoid these problems, biomass-based materials as a kind of low price, wide source, mostly belong to porous media, are good carriers of PCMs. Biomass-supported composite phase change materials (CPCMs) effectively encapsulate PCMs by using the pore structure rich in biomass, improving the inherent defects of PCMs. In this review, the latest research achievement of biomass-based CPCMs in recent years is reviewed. Specifically, the treatment of biomass materials in CPCMs is first introduced, including raw biomass, biomass porous carbon materials and their derivatives. In addition, various approaches for improving the thermal characteristics (e.g., thermal conductivity and heat storage capacity) of biomass-based CPCMs were summarized. Additionally, we also present a series of typical applications of biomass-based CPCMs, such as energy conversion and thermal regulation, and the future research directions are prospected. This review will provide some guidance for promoting the research on biomass-based CPCMs, which is crucial for resource recycling and green and low-carbon development.
中文翻译:
用于热能储存和多能量转换的生物质基形状稳定相变材料
固液形式的相变材料 (PCM) 具有体积变化小、储能容量高和适当的相变温度等优点。它们能够以可逆的方式释放和储存潜热,以促进在过渡过程中储存和使用热能。然而,固液相变材料仍面临熔融状态下易泄漏、导热系数低、功能单一等挑战。为了解决和避免这些问题,生物质基材料作为一种价格低、来源广、多属于多孔介质的材料,是相变材料的良好载体。生物质负载复合相变材料(CPCMs)利用富含生物质的孔结构有效地封装了相变材料,改善了相变材料的固有缺陷。本文综述了近年来基于生物质的 CPCM 的最新研究成果。具体来说,首先介绍了 CPCM 中生物质材料的处理,包括生物质原料、生物质多孔碳材料及其衍生物。此外,还总结了改善基于生物质的 CPCM 的热特性(例如,导热系数和储热能力)的各种方法。此外,我们还介绍了生物质基 CPCM 的一系列典型应用,如能量转换和热调节,并对未来的研究方向进行了展望。本文将为推进生物质基 CPCMs 的研究提供一定的指导,这对于资源循环利用和绿色低碳发展至关重要。
更新日期:2024-11-03
中文翻译:
用于热能储存和多能量转换的生物质基形状稳定相变材料
固液形式的相变材料 (PCM) 具有体积变化小、储能容量高和适当的相变温度等优点。它们能够以可逆的方式释放和储存潜热,以促进在过渡过程中储存和使用热能。然而,固液相变材料仍面临熔融状态下易泄漏、导热系数低、功能单一等挑战。为了解决和避免这些问题,生物质基材料作为一种价格低、来源广、多属于多孔介质的材料,是相变材料的良好载体。生物质负载复合相变材料(CPCMs)利用富含生物质的孔结构有效地封装了相变材料,改善了相变材料的固有缺陷。本文综述了近年来基于生物质的 CPCM 的最新研究成果。具体来说,首先介绍了 CPCM 中生物质材料的处理,包括生物质原料、生物质多孔碳材料及其衍生物。此外,还总结了改善基于生物质的 CPCM 的热特性(例如,导热系数和储热能力)的各种方法。此外,我们还介绍了生物质基 CPCM 的一系列典型应用,如能量转换和热调节,并对未来的研究方向进行了展望。本文将为推进生物质基 CPCMs 的研究提供一定的指导,这对于资源循环利用和绿色低碳发展至关重要。