当前位置:
X-MOL 学术
›
Schizophr. Bull.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Protective Factors Predict Resilient Outcomes in Clinical High-Risk Youth with the Highest Individualized Psychosis Risk Scores
Schizophrenia Bulletin ( IF 5.3 ) Pub Date : 2024-11-02 , DOI: 10.1093/schbul/sbae182 Kristin S Cadenhead, Jean Addington, Carrie E Bearden, Tyrone D Cannon, Barbara A Cornblatt, Matcheri Keshavan, Daniel H Mathalon, Diana O Perkins, William Stone, Elaine F Walker, Scott W Woods
Schizophrenia Bulletin ( IF 5.3 ) Pub Date : 2024-11-02 , DOI: 10.1093/schbul/sbae182 Kristin S Cadenhead, Jean Addington, Carrie E Bearden, Tyrone D Cannon, Barbara A Cornblatt, Matcheri Keshavan, Daniel H Mathalon, Diana O Perkins, William Stone, Elaine F Walker, Scott W Woods
Background and Hypothesis Studying individuals at Clinical High Risk (CHR) for psychosis provides an opportunity to examine protective factors that predict resilient outcomes. Here, we present a model for the study of protective factors in CHR participants at the very highest risk for psychotic conversion based on the Psychosis Risk Calculator. Study Design CHR participants (N = 572) from NAPLS3 were assessed on the Risk Calculator. Those who scored in the top half of the distribution and had 2 years of follow-up (N = 136) were divided into those who did not convert to psychosis (resilient, N = 90) and those who did (nonresilient, N = 46). Groups were compared based on candidate protective factors that were not part of the Risk Calculator. Better functional outcome was also examined as an outcome measure of resiliency. Study Results: Exploratory analyses suggest that Hispanic heritage, social engagement, desirable life experiences, premorbid functioning and IQ are all potential protective factors that predict resilient outcomes. Reduced startle reactivity, brain area and volume were also associated with greater resilience. Conclusions The primary focus of CHR research has been the risk and prediction of psychosis, while less is known about protective factors. Clearly, a supportive childhood environment, positive experiences, and educational enrichment may contribute to better premorbid functioning and brain development, which in turn contribute to more resilient outcomes. Therapies focused on enhancing protective factors in the CHR population are logical preventive interventions that may benefit this vulnerable population. Future CHR research might use similar models to develop a “protective index” to predict resilient outcomes.
中文翻译:
保护因素预测个体化精神病风险评分最高的临床高危青年的弹性结果
背景和假设 研究精神病临床高危 (CHR) 的个体提供了一个机会来检查预测弹性结果的保护因素。在这里,我们提出了一个基于精神病风险计算器的 CHR 参与者的保护因素研究模型,这些参与者处于精神病转换风险非常高。研究设计 来自 NAPLS3 的 CHR 参与者 (N = 572) 在风险计算器上进行评估。那些得分在分布的上半部分并有 2 年随访 (N = 136) 的人被分为那些没有转化为精神病的人 (弹性,N = 90) 和那些已经转化为精神病的人 (非弹性,N = 46)。根据不属于风险计算器的候选保护因素对各组进行比较。更好的功能结果也被作为弹性的结果测量进行了检查。研究结果: 探索性分析表明,西班牙裔血统、社会参与、理想的生活经历、病前功能和智商都是预测弹性结果的潜在保护因素。降低的惊吓反应性、大脑面积和体积也与更大的弹性有关。结论 CHR 研究的主要重点是精神病的风险和预测,而对保护因素知之甚少。显然,支持性的童年环境、积极的经历和丰富的教育可能有助于更好的病前功能和大脑发育,从而有助于获得更具弹性的结果。专注于增强 CHR 人群保护因子的疗法是合乎逻辑的预防性干预措施,可能使这些弱势群体受益。未来的 CHR 研究可能会使用类似的模型来开发“保护指数”来预测弹性结果。
更新日期:2024-11-02
中文翻译:
保护因素预测个体化精神病风险评分最高的临床高危青年的弹性结果
背景和假设 研究精神病临床高危 (CHR) 的个体提供了一个机会来检查预测弹性结果的保护因素。在这里,我们提出了一个基于精神病风险计算器的 CHR 参与者的保护因素研究模型,这些参与者处于精神病转换风险非常高。研究设计 来自 NAPLS3 的 CHR 参与者 (N = 572) 在风险计算器上进行评估。那些得分在分布的上半部分并有 2 年随访 (N = 136) 的人被分为那些没有转化为精神病的人 (弹性,N = 90) 和那些已经转化为精神病的人 (非弹性,N = 46)。根据不属于风险计算器的候选保护因素对各组进行比较。更好的功能结果也被作为弹性的结果测量进行了检查。研究结果: 探索性分析表明,西班牙裔血统、社会参与、理想的生活经历、病前功能和智商都是预测弹性结果的潜在保护因素。降低的惊吓反应性、大脑面积和体积也与更大的弹性有关。结论 CHR 研究的主要重点是精神病的风险和预测,而对保护因素知之甚少。显然,支持性的童年环境、积极的经历和丰富的教育可能有助于更好的病前功能和大脑发育,从而有助于获得更具弹性的结果。专注于增强 CHR 人群保护因子的疗法是合乎逻辑的预防性干预措施,可能使这些弱势群体受益。未来的 CHR 研究可能会使用类似的模型来开发“保护指数”来预测弹性结果。