当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing strength and ductility synergy through heterogeneous laminated structure design in high-entropy alloys
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.jmst.2024.10.011
Longfei Zeng, Jinghui Zhang, Xu Lu, Shaoyu Li, Pingan Jiang

Heterogeneous laminated structure (HLS) design offers new opportunities to enhance the mechanical performance of high-entropy alloys (HEAs) through synergistic effects from heterogeneity. However, it remains challenging to introduce the HLS into HEAs via severe plastic deformation due to their strong work-hardening capacity. In this study, a specially designed multi-level HLS, characterized by alternatively stacked micro-grained soft CoCrFeNi layers and nanostructured ultra-hard Al0.3CoCrFeNi layers containing a three-phase microstructure (composed of nanograined face-centered cubic matrix, (Al, Ni)-rich B2 precipitates, and Cr-rich σ precipitates), is controllably introduced into FCC HEAs via a conventional thermo–mechanical processing involving hot-pressing, cold-rolling, and annealing. Meanwhile, thermo–mechanical processing induces Al element diffusion across the layer interface, resulting in the formation of an interfacial transition layer and the establishment of a strong interface bonding between the neighboring CoCrFeNi and Al0.3CoCrFeNi layers. As a result, the multi-level HLSed CoCrFeNi/Al0.3CoCrFeNi composite exhibits a yield strength as high as 1127±25.4 MPa while maintaining a large fracture elongation (up to (26.3±2.4)%). Such an excellent strength–ductility synergy surpasses that of most previously reported high-performance monolithic bulk CoCrFeNi and Al0.3CoCrFeNi HEAs prepared through careful chemical composition optimization and/or thermo–mechanical processing. Strong hetero-deformation induced strengthening benefited from the apparent microstructural/microhardness difference and the strong interface bonding between the neighbouring CoCrFeNi and Al0.3CoCrFeNi layers, together with simultaneous activation of multiple strain hardening mechanisms containing mechanical twinning, stacking faults and precipitation strengthening, is responsible for the excellent strength–ductility combination. This multi-level HLS and its fabrication strategy provide an enlightening way to develop strong and ductile HEAs and can also be applied to high-performance designs of other metallic materials.

中文翻译:


通过高熵合金的异质层状结构设计提高强度和延展性协同作用



异质层状结构 (HLS) 设计为通过异质性的协同效应提高高熵合金 (HEA) 的机械性能提供了新的机会。然而,由于其强大的加工硬化能力,通过严重的塑性变形将 HLS 引入高熵合金仍然具有挑战性。在本研究中,一种专门设计的多级 HLS,其特征是交替堆叠的微晶软 CoCrFeNi 层和纳米结构的超硬 Al0.3CoCrFeNi 层,其中包含三相微观结构(由纳米晶面心立方基体、(Al,Ni)富 B2 沉淀物和富 Cr σ沉淀物组成),通过涉及热压的常规热机械加工可控地引入 FCC HEA, 冷轧和退火。同时,热机械加工诱导 Al 元素在层界面上扩散,从而形成界面过渡层,并在相邻的 CoCrFeNi 和 Al0.3CoCrFeNi 层之间建立牢固的界面键合。因此,多级HLSed CoCrFeNi/Al0.3CoCrFeNi复合材料表现出高达1127±25.4 MPa的屈服强度,同时保持较大的断裂伸长率(高达(26.3±2.4)%)。这种出色的强度-延展性协同作用超过了以前报道的大多数高性能整体体 CoCrFeNi 和 Al0.3CoCrFeNi HEAs,这些高熵合金是通过仔细的化学成分优化和/或热机械加工制备的。强烈的异质变形诱导的强化得益于明显的微观结构/显微硬度差异以及相邻的 CoCrFeNi 和 Al 0 之间的强界面结合。3个 CoCrFeNi 层,以及同时激活包含机械孪晶、堆叠故障和沉淀强化的多个应变硬化机制,是实现出色的强度-延展性组合的原因。这种多级 HLS 及其制造策略为开发坚固且具有延展性的 HEA 提供了一种启发性的方法,也可以应用于其他金属材料的高性能设计。
更新日期:2024-11-01
down
wechat
bug