当前位置:
X-MOL 学术
›
J. Mater. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nanoscale insights in core–shell structure formation and property regulation of isotropic pyrolytic carbon materials
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.jmst.2024.09.045 Caixiang Xiao, Fei Zhao, Xu Yang, Yuanxiao Zhao, Qiang Song, Qingliang Shen
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.jmst.2024.09.045 Caixiang Xiao, Fei Zhao, Xu Yang, Yuanxiao Zhao, Qiang Song, Qingliang Shen
Isotropic pyrolytic carbon (IPC) is renowned for its robust mechanical, biological, and tribological properties. However, the current mechanisms for modulating IPC microstructure are insufficient to achieve higher performance. Herein, this study provides nanoscale insights into the formation and property regulation of the core–shell structure of the IPC, integrating simulation and experimental approaches. Large-scale reactive molecular dynamics simulations elucidate the microstructural evolution and assembly processes from precursors to nanoparticles and intertwined graphene networks. Simulation process characterization enable versatile adjustment of IPC microstructural features and one-step deposition of hybrid structures with disordered cores and ordered shell layers. Compared to Pyrolytic carbon (PyC) with laminated graphene arrangement, the prepared hybrid structure enables rapid assembly of large-size standalone carbon components. Moreover, the hybrid architecture effectively improves the core–shell phase connection and significantly increases the interfacial shear stress within the intertwined graphene shell layers. Consequently, it greatly improves load transfer efficiency and enhances crack-bridging toughening effect. The endeavor to establish precise microstructure formation and property regulation in IPC materials promises to steer high-performance carbon materials toward distinct developmental trajectories.
中文翻译:
各向同性热解碳材料核壳结构形成和性能调控的纳米级见解
各向同性热解碳 (IPC) 以其强大的机械、生物和摩擦学特性而闻名。然而,目前调节 IPC 微结构的机制不足以实现更高的性能。在此,本研究为IPC核壳结构的形成和性能调控提供了纳米级的见解,整合了仿真和实验方法。大规模反应分子动力学模拟阐明了从前驱体到纳米颗粒和交织石墨烯网络的微观结构演变和组装过程。仿真工艺表征可实现 IPC 微观结构特征的多功能调整,以及具有无序核心和有序壳层的混合结构的一步沉积。与具有层压石墨烯排列的热解碳 (PyC) 相比,制备的混合结构能够快速组装大型独立碳部件。此外,混合结构有效地改善了核壳相连接,并显着增加了交织石墨烯壳层内的界面剪切应力。因此,它大大提高了载荷传递效率并增强了裂纹桥接增韧效果。在 IPC 材料中建立精确的微观结构形成和性能调节的努力有望引导高性能碳材料走向独特的发展轨迹。
更新日期:2024-11-01
中文翻译:
各向同性热解碳材料核壳结构形成和性能调控的纳米级见解
各向同性热解碳 (IPC) 以其强大的机械、生物和摩擦学特性而闻名。然而,目前调节 IPC 微结构的机制不足以实现更高的性能。在此,本研究为IPC核壳结构的形成和性能调控提供了纳米级的见解,整合了仿真和实验方法。大规模反应分子动力学模拟阐明了从前驱体到纳米颗粒和交织石墨烯网络的微观结构演变和组装过程。仿真工艺表征可实现 IPC 微观结构特征的多功能调整,以及具有无序核心和有序壳层的混合结构的一步沉积。与具有层压石墨烯排列的热解碳 (PyC) 相比,制备的混合结构能够快速组装大型独立碳部件。此外,混合结构有效地改善了核壳相连接,并显着增加了交织石墨烯壳层内的界面剪切应力。因此,它大大提高了载荷传递效率并增强了裂纹桥接增韧效果。在 IPC 材料中建立精确的微观结构形成和性能调节的努力有望引导高性能碳材料走向独特的发展轨迹。