当前位置:
X-MOL 学术
›
Appl. Phys. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Gate control of superconducting current: Mechanisms, parameters, and technological potential
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-10-31 , DOI: 10.1063/5.0222371 L. Ruf, C. Puglia, T. Elalaily, G. De Simoni, F. Joint, M. Berke, J. Koch, A. Iorio, S. Khorshidian, P. Makk, S. Gasparinetti, S. Csonka, W. Belzig, M. Cuoco, F. Giazotto, E. Scheer, A. Di Bernardo
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-10-31 , DOI: 10.1063/5.0222371 L. Ruf, C. Puglia, T. Elalaily, G. De Simoni, F. Joint, M. Berke, J. Koch, A. Iorio, S. Khorshidian, P. Makk, S. Gasparinetti, S. Csonka, W. Belzig, M. Cuoco, F. Giazotto, E. Scheer, A. Di Bernardo
In conventional metal-oxide semiconductor (CMOS) electronics, the logic state of a device is set by a gate voltage (VG). The superconducting equivalent of such effect had remained unknown until it was recently shown that a VG can tune the superconducting current (supercurrent) flowing through a nanoconstriction in a superconductor. This gate-controlled supercurrent (GCS) can lead to superconducting logics like CMOS logics, but with lower energy dissipation. The physical mechanism underlying the GCS, however, remains under debate. In this review article, we illustrate the main mechanisms proposed for the GCS, and the material and device parameters that mostly affect it based on the evidence reported. We conclude that different mechanisms are at play in the different studies reported so far. We then outline studies that can help answer open questions on the effect and achieve control over it, which is key for applications. We finally give insights into the impact that the GCS can have toward high-performance computing with low-energy dissipation and quantum technologies.
中文翻译:
超导电流的栅极控制:机制、参数和技术潜力
在传统的金属氧化物半导体 (CMOS) 电子产品中,器件的逻辑状态由栅极电压 (VG) 设置。这种效应的超导等效物一直不为人知,直到最近证明 VG 可以调节流经超导体中纳米收缩的超导电流(超电流)。这种门控超电流 (GCS) 可以产生像 CMOS logics 这样的超导逻辑,但能量耗散较低。然而,GCS 背后的物理机制仍存在争议。在这篇综述文章中,我们根据报告的证据说明了为 GCS 提出的主要机制,以及主要影响 GCS 的材料和设备参数。我们得出结论,在迄今为止报道的不同研究中,不同的机制在起作用。然后,我们概述了有助于回答有关效果的开放性问题并实现对效果的控制的研究,这是应用的关键。最后,我们深入了解了 GCS 对采用低能耗和量子技术的高性能计算的影响。
更新日期:2024-10-31
中文翻译:
超导电流的栅极控制:机制、参数和技术潜力
在传统的金属氧化物半导体 (CMOS) 电子产品中,器件的逻辑状态由栅极电压 (VG) 设置。这种效应的超导等效物一直不为人知,直到最近证明 VG 可以调节流经超导体中纳米收缩的超导电流(超电流)。这种门控超电流 (GCS) 可以产生像 CMOS logics 这样的超导逻辑,但能量耗散较低。然而,GCS 背后的物理机制仍存在争议。在这篇综述文章中,我们根据报告的证据说明了为 GCS 提出的主要机制,以及主要影响 GCS 的材料和设备参数。我们得出结论,在迄今为止报道的不同研究中,不同的机制在起作用。然后,我们概述了有助于回答有关效果的开放性问题并实现对效果的控制的研究,这是应用的关键。最后,我们深入了解了 GCS 对采用低能耗和量子技术的高性能计算的影响。