Plant and Soil ( IF 3.9 ) Pub Date : 2024-10-31 , DOI: 10.1007/s11104-024-07014-w Xue Li, Jin Li, Zhi Quan, Di Wu, Yingying Wang, Ronghua Kang, Keping Sun, Kai Huang, Xin Chen, Yunting Fang
Background and aims
Greenhouse vegetable production (GVP) is expanding globally. High nitrogen (N) fertilizer application causes soil disease and nitrate residues. Anaerobic soil disinfestation (ASD), a common mitigation strategy, involves creating an anaerobic environment through soil flooding, plastic film covering, and greenhouse sealing, typically with organic C addition to expedite the process. These conditions can promote denitrification, causing nitrous oxide (N2O) and dinitrogen (N2) emissions, but this has rarely been reported.
Methods
15N labeling was used for in situ monitoring of N₂O and N₂ emissions during ASD in a GVP system, in Shouguang, Northern China. Two treatments were implemented: conventional organic fertilization (Fertilizer) and a control (No-fertilizer), with continuous monitoring over 14 days.
Results
Within 14 days, cumulative gaseous N emissions in Fertilizer and No-fertilizer treatments were 0.82, 0.47 kg N ha−1 for N2O, and 40.7 and 25.5 kg N ha−1 for N2, respectively. Organic fertilization significantly increased N2O and N2 emission. In Fertilizer, N emitted as N2O and N2 accounted for 0.3% and 14.5% of organic fertilizer, respectively. From days 1–6, the predominant gaseous N was N2, with an N2O/ (N2O + N2) ratio (RN2O) of 0.007–0.015. From days 7–14, the N2O proportion increased, with RN2O of 0.21–0.75. Isotopic information showed that denitrification contributed to 48.9–51.2% and 27.1–36.7% of total N2O and N2 emissions.
Conclusion
Our findings emphasize the importance of N2 emissions in N loss and provide a basis for studying the fate of N and developing measures to reduce N2O emissions within GVP systems.