当前位置:
X-MOL 学术
›
J. Psychopathol. Clin. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Shared principles for disentangling heterogeneity in neuroscience and psychopathology.
Journal of Psychopathology and Clinical Science ( IF 3.1 ) Pub Date : 2024-11-01 , DOI: 10.1037/abn0000907 Brian Kraus,Caterina Gratton
Journal of Psychopathology and Clinical Science ( IF 3.1 ) Pub Date : 2024-11-01 , DOI: 10.1037/abn0000907 Brian Kraus,Caterina Gratton
A primary goal of clinical neuroscience is to identify associations between individual differences in psychopathology and the brain. However, despite a significant amount of resources invested in this endeavor, few reliable neural correlates of psychopathology have been identified. A common suspect for this lack of success is the significant heterogeneity in symptoms observed in psychiatric disorders. However, this is not the only potential source of heterogeneity, as substantial heterogeneity is also observed in brain structure and function. Thus, for clinical neuroscience to identify reliable neural correlates of psychopathology, it will be necessary to better understand heterogeneity in both psychopathology and the brain. In this commentary, we suggest four shared principles that can help disentangle heterogeneity in both of these domains: (a) the brain and behavior should both be treated as complex measures, (b) a priori assumptions should be viewed with caution unless they can be replicated robustly in individuals, (c) complex models of individual differences require appropriate data to estimate them, and (d) the field would benefit from an increased focus on extensively measuring individuals, such as through the use of personalized models of psychopathology and neuroimaging data. Together, these shared principles can aid in better characterizing-and separating relevant and irrelevant-heterogeneity in measures of psychopathology and neuroimaging. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
中文翻译:
解开神经科学和精神病理学中异质性的共同原则。
临床神经科学的一个主要目标是确定精神病理学个体差异与大脑之间的关联。然而,尽管在这项工作中投入了大量资源,但几乎没有确定精神病理学的可靠神经相关性。这种缺乏成功的一个常见怀疑是在精神疾病中观察到的症状存在显著异质性。然而,这并不是异质性的唯一潜在来源,因为在大脑结构和功能中也观察到大量的异质性。因此,临床神经科学要识别精神病理学的可靠神经相关性,就有必要更好地了解精神病理学和大脑的异质性。在本评论中,我们提出了四个共同的原则,可以帮助理清这两个领域的异质性:(a) 大脑和行为都应该被视为复杂的措施,(b) 除非它们可以在个体中稳健地复制,否则应谨慎看待先验假设,(c) 个体差异的复杂模型需要适当的数据来估计它们, (d) 该领域将受益于对广泛测量个体的更多关注,例如通过使用精神病理学和神经影像学数据的个性化模型。总之,这些共同的原则可以帮助更好地表征和区分精神病理学和神经影像学测量中的相关和不相关异质性。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
更新日期:2024-11-01
中文翻译:
解开神经科学和精神病理学中异质性的共同原则。
临床神经科学的一个主要目标是确定精神病理学个体差异与大脑之间的关联。然而,尽管在这项工作中投入了大量资源,但几乎没有确定精神病理学的可靠神经相关性。这种缺乏成功的一个常见怀疑是在精神疾病中观察到的症状存在显著异质性。然而,这并不是异质性的唯一潜在来源,因为在大脑结构和功能中也观察到大量的异质性。因此,临床神经科学要识别精神病理学的可靠神经相关性,就有必要更好地了解精神病理学和大脑的异质性。在本评论中,我们提出了四个共同的原则,可以帮助理清这两个领域的异质性:(a) 大脑和行为都应该被视为复杂的措施,(b) 除非它们可以在个体中稳健地复制,否则应谨慎看待先验假设,(c) 个体差异的复杂模型需要适当的数据来估计它们, (d) 该领域将受益于对广泛测量个体的更多关注,例如通过使用精神病理学和神经影像学数据的个性化模型。总之,这些共同的原则可以帮助更好地表征和区分精神病理学和神经影像学测量中的相关和不相关异质性。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。