当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scalable Multispecies Ion Transport in a Grid-Based Surface-Electrode Trap
Physical Review X ( IF 11.6 ) Pub Date : 2024-11-01 , DOI: 10.1103/physrevx.14.041028
Robert D. Delaney, Lucas R. Sletten, Matthew J. Cich, Brian Estey, Maya I. Fabrikant, David Hayes, Ian M. Hoffman, James Hostetter, Christopher Langer, Steven A. Moses, Abigail R. Perry, Timothy A. Peterson, Andrew Schaffer, Curtis Volin, Grahame Vittorini, William Cody Burton

Quantum processors based on linear arrays of trapped ions have achieved exceptional performance, but scaling to large qubit numbers requires realizing two-dimensional ion arrays as envisioned in the quantum charge-coupled device (QCCD) architecture. Here, we present a scalable method for the control of ion crystals in a grid-based surface-electrode Paul trap and characterize it in the context of transport operations that sort and reorder multispecies crystals. By combining cowiring of control electrodes at translationally symmetric locations in each grid site with the sitewise ability to exchange the voltages applied to two special electrodes gated by a binary input, site-dependent operations can be achieved using only a fixed number of analog voltage signals and a single digital input per site. In two separate experimental systems containing nominally identical grid traps, one using Yb+171−Ba+138 crystals and the other Ba+137Sr+88, we demonstrate this method by characterizing the conditional intrasite crystal reorder and the conditional exchange of ions between adjacent sites on the grid. Averaged across a multisite region of interest, we measure subquanta motional excitation in the axial in-phase and out-of-phase modes of the crystals following these operations at exchange rates of 2.5 kHz. In this initial demonstration, the logic controlling the voltage exchange occurs in software, but the applied signals mimic a proposed hardware implementation using crossover switches. These techniques can be further extended to implement other conditional operations in the QCCD architecture such as gates, initialization, and measurement. Published by the American Physical Society 2024

中文翻译:


基于网格的表面电极捕集阱中的可扩展多物种离子传输



基于囚禁离子线性阵列的量子处理器已经实现了卓越的性能,但要扩展到大量子比特数,需要实现量子电荷耦合器件 (QCCD) 架构中设想的二维离子阵列。在这里,我们提出了一种可扩展的方法,用于在基于网格的表面电极 Paul 陷阱中控制离子晶体,并在对多物种晶体进行分类和重新排序的运输操作的背景下对其进行表征。通过将每个网格站点中平移对称位置的控制电极的共布线与站点交换施加到由二进制输入选通的两个特殊电极的电压的逐点交换能力相结合,只需使用固定数量的模拟电压信号和每个站点的单个数字输入即可实现与站点相关的操作。在两个包含名义上相同的网格陷阱的独立实验系统中,一个使用 Yb+171-Ba+138 晶体,另一个使用 Ba+137-Sr+88,我们通过表征条件性位点内晶体重排序和网格上相邻位点之间的离子条件交换来证明这种方法。在感兴趣的多位点区域进行平均,我们以 2.5 kHz 的交换速率测量这些操作后晶体轴向同相和异相模式下的亚量子运动激发。在这个初始演示中,控制电压交换的 logic 发生在软件中,但施加的信号使用分频开关模拟了拟议的硬件实现。这些技术可以进一步扩展,以实现 QCCD 架构中的其他条件操作,例如门、初始化和测量。 美国物理学会 2024 年出版
更新日期:2024-11-01
down
wechat
bug