Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electro-biodiesel empowered by co-design of microorganism and electrocatalysis
Joule ( IF 38.6 ) Pub Date : 2024-10-31 , DOI: 10.1016/j.joule.2024.10.001 Kainan Chen, Peng Zhang, Yayun Chen, Chengcheng Fei, Jiali Yu, Jiahong Zhou, Yuanhao Liang, Weiwei Li, Sisi Xiang, Susie Y. Dai, Joshua S. Yuan
Joule ( IF 38.6 ) Pub Date : 2024-10-31 , DOI: 10.1016/j.joule.2024.10.001 Kainan Chen, Peng Zhang, Yayun Chen, Chengcheng Fei, Jiali Yu, Jiahong Zhou, Yuanhao Liang, Weiwei Li, Sisi Xiang, Susie Y. Dai, Joshua S. Yuan
Efficient and sustainable energy production is essential for climate change mitigation, yet current approaches like biofuels or electro-fuels have limitations in efficiency and product profile. We advanced a new electro-biodiesel route via integrating electrocatalysis and bioconversion to produce lipids from CO2 for biodiesel. We first revealed bioenergetic and metabolic limits in C2+ intermediate utilization through simulations and metabolomics, guiding the synthetic biology design to achieve reductant balance, more ATP production, efficient lipid conversion, and higher lipid yield. Furthermore, we discovered specific ratios of ethanol and acetate to achieve co-substrate synergy, empowering bimetallic catalyst design to improve bioconversion efficiency. The microbial and catalyst co-design achieved a solar-energy-to-molecule conversion efficiency of 4.5% for CO2-to-lipid conversion. Electro-biodiesel leverages the high efficiency of electrocatalysis and longer-carbon-chain products from microbial lipid synthesis, overcoming the limitations for both electrocatalysis and bioconversion. Electro-biodiesel achieved 45 times less land usage than soybean biodiesel, competitive economics, and substantial carbon emission reduction.
中文翻译:
通过微生物和电催化的协同设计实现的电动生物柴油
高效和可持续的能源生产对于缓解气候变化至关重要,但目前的生物燃料或电燃料等方法在效率和产品概况方面存在局限性。我们通过整合电催化和生物转化,从 CO2 中生产用于生物柴油的脂质,从而推进了一种新的电生物柴油路线。我们首先通过模拟和代谢组学揭示了 C2+ 中间体利用中的生物能量和代谢极限,指导合成生物学设计实现还原剂平衡、更多的 ATP 产生、高效的脂质转化和更高的脂质产量。此外,我们发现了乙醇和乙酸盐的特定比例以实现共底物协同作用,使双金属催化剂设计能够提高生物转化效率。微生物和催化剂的协同设计实现了 4.5% 的太阳能到分子的转化效率,用于 CO2 到脂质的转化。电生物柴油利用高效电催化和微生物脂质合成的长碳链产物,克服了电催化和生物转化的局限性。电动生物柴油的土地使用量比大豆生物柴油少 45 倍,具有竞争力的经济性,并大幅减少了碳排放。
更新日期:2024-10-31
中文翻译:
通过微生物和电催化的协同设计实现的电动生物柴油
高效和可持续的能源生产对于缓解气候变化至关重要,但目前的生物燃料或电燃料等方法在效率和产品概况方面存在局限性。我们通过整合电催化和生物转化,从 CO2 中生产用于生物柴油的脂质,从而推进了一种新的电生物柴油路线。我们首先通过模拟和代谢组学揭示了 C2+ 中间体利用中的生物能量和代谢极限,指导合成生物学设计实现还原剂平衡、更多的 ATP 产生、高效的脂质转化和更高的脂质产量。此外,我们发现了乙醇和乙酸盐的特定比例以实现共底物协同作用,使双金属催化剂设计能够提高生物转化效率。微生物和催化剂的协同设计实现了 4.5% 的太阳能到分子的转化效率,用于 CO2 到脂质的转化。电生物柴油利用高效电催化和微生物脂质合成的长碳链产物,克服了电催化和生物转化的局限性。电动生物柴油的土地使用量比大豆生物柴油少 45 倍,具有竞争力的经济性,并大幅减少了碳排放。