当前位置: X-MOL 学术Cell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Empowering biomedical discovery with AI agents
Cell ( IF 45.5 ) Pub Date : 2024-10-31 , DOI: 10.1016/j.cell.2024.09.022
Shanghua Gao, Ada Fang, Yepeng Huang, Valentina Giunchiglia, Ayush Noori, Jonathan Richard Schwarz, Yasha Ektefaie, Jovana Kondic, Marinka Zitnik

We envision “AI scientists” as systems capable of skeptical learning and reasoning that empower biomedical research through collaborative agents that integrate AI models and biomedical tools with experimental platforms. Rather than taking humans out of the discovery process, biomedical AI agents combine human creativity and expertise with AI’s ability to analyze large datasets, navigate hypothesis spaces, and execute repetitive tasks. AI agents are poised to be proficient in various tasks, planning discovery workflows and performing self-assessment to identify and mitigate gaps in their knowledge. These agents use large language models and generative models to feature structured memory for continual learning and use machine learning tools to incorporate scientific knowledge, biological principles, and theories. AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.

中文翻译:


使用 AI 代理为生物医学发现提供支持



我们将“AI 科学家”设想为能够进行怀疑学习和推理的系统,通过将 AI 模型和生物医学工具与实验平台集成的协作代理来增强生物医学研究的能力。生物医学 AI 代理不是将人类从发现过程中抽离出来,而是将人类的创造力和专业知识与 AI 分析大型数据集、导航假设空间和执行重复性任务的能力相结合。AI 代理已准备好精通各种任务,规划发现工作流程并执行自我评估,以识别和缩小其知识差距。这些代理使用大型语言模型和生成模型来具有结构内存以实现持续学习,并使用机器学习工具来整合科学知识、生物学原理和理论。AI 代理可以影响从虚拟细胞模拟、表型的可编程控制、细胞回路设计到开发新疗法等领域。
更新日期:2024-10-31
down
wechat
bug