当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced performance of TENG through graphene oxide and transition layer coupling: Achieving green energy harvesting and powering wearable devices
Nano Energy ( IF 16.8 ) Pub Date : 2024-10-31 , DOI: 10.1016/j.nanoen.2024.110436 Shun Li, Yixian Hu, Pengcheng He, Jiangpeng Qu, Jing Zhao, Jiliang Mo, Zhiyong Fan
Nano Energy ( IF 16.8 ) Pub Date : 2024-10-31 , DOI: 10.1016/j.nanoen.2024.110436 Shun Li, Yixian Hu, Pengcheng He, Jiangpeng Qu, Jing Zhao, Jiliang Mo, Zhiyong Fan
Triboelectric nanogenerators (TENGs) offer a novel approach to harvesting green energy due to their simple structure, low manufacturing cost, and suitability for collecting low-frequency mechanical energy. Previous research has primarily focused on the impact of single factors on the electrical output of TENGs, such as the generation, storage, or loss of triboelectric charges. In this study, we enhanced the generation of triboelectric charges by introducing graphene oxide (GO) and reduced charge loss through a Polyimide (PI) film as a transition layer. By combining both, we maximized the electrical output performance of the TENG. The ISC , VOC and charge of the optimized TL-TENG are 33.23 μA, 318.52 V and 152.03 nC, respectively, with a maximum output power of 2.6 W/m2 . The results indicate that the performance enhancement from the transition layer exceeded that of GO alone, possibly because it reduced the electron drift rate by 97.37 %. Additionally, the TL-TENG demonstrated excellent mechanical durability, with ISC decrease of only 2.25 % after 5×104 contact-separation cycles. The device also showed effective metal anti-corrosion properties and could harvest energy from mechanical vibrations and human motion, powering at least 107 LEDs and supporting small electronic devices such as digital watches. The outcomes of this study hold promise for providing reliable energy sources for wearable devices and offer theoretical guidance for designing high performance TENGs.
中文翻译:
通过氧化石墨烯和过渡层耦合增强 TENG 的性能:实现绿色能量收集并为可穿戴设备供电
摩擦纳米发电机 (TENG) 由于其结构简单、制造成本低且适用于收集低频机械能,提供了一种收集绿色能源的新方法。以前的研究主要集中在单一因素对 TENG 电输出的影响,例如摩擦电荷的产生、储存或损失。在这项研究中,我们通过引入氧化石墨烯 (GO) 来增强摩擦电荷的产生,并通过聚酰亚胺 (PI) 膜作为过渡层减少电荷损失。通过将两者结合起来,我们最大限度地提高了 TENG 的电输出性能。优化后的 TL-TENG 的 ISC、VOC 和电荷分别为 33.23 μA、318.52 V 和 152.03 nC,最大输出功率为 2.6 W/m2。结果表明,过渡层的性能增强超过了单独的 GO,可能是因为它将电子漂移率降低了 97.37 %。此外,TL-TENG 表现出优异的机械耐久性,在 5×104 次接触分离循环后,ISC 仅降低了 2.25%。该设备还显示出有效的金属防腐蚀性能,可以从机械振动和人体运动中收集能量,为至少 107 个 LED 供电,并支持数字手表等小型电子设备。本研究的结果有望为可穿戴设备提供可靠的能源,并为设计高性能 TENG 提供理论指导。
更新日期:2024-10-31
中文翻译:
通过氧化石墨烯和过渡层耦合增强 TENG 的性能:实现绿色能量收集并为可穿戴设备供电
摩擦纳米发电机 (TENG) 由于其结构简单、制造成本低且适用于收集低频机械能,提供了一种收集绿色能源的新方法。以前的研究主要集中在单一因素对 TENG 电输出的影响,例如摩擦电荷的产生、储存或损失。在这项研究中,我们通过引入氧化石墨烯 (GO) 来增强摩擦电荷的产生,并通过聚酰亚胺 (PI) 膜作为过渡层减少电荷损失。通过将两者结合起来,我们最大限度地提高了 TENG 的电输出性能。优化后的 TL-TENG 的 ISC、VOC 和电荷分别为 33.23 μA、318.52 V 和 152.03 nC,最大输出功率为 2.6 W/m2。结果表明,过渡层的性能增强超过了单独的 GO,可能是因为它将电子漂移率降低了 97.37 %。此外,TL-TENG 表现出优异的机械耐久性,在 5×104 次接触分离循环后,ISC 仅降低了 2.25%。该设备还显示出有效的金属防腐蚀性能,可以从机械振动和人体运动中收集能量,为至少 107 个 LED 供电,并支持数字手表等小型电子设备。本研究的结果有望为可穿戴设备提供可靠的能源,并为设计高性能 TENG 提供理论指导。