当前位置:
X-MOL 学术
›
Int. J. Numer. Anal. Methods Geomech.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modeling the Swelling Behavior of Clayey Geomaterials Across Scales: Advances and Challenges
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 3.4 ) Pub Date : 2024-10-30 , DOI: 10.1002/nag.3881 Hamza Mhamdi Alaoui, Chaofa Zhao, Wenbo Niu, Pierre‐Yves Hicher
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 3.4 ) Pub Date : 2024-10-30 , DOI: 10.1002/nag.3881 Hamza Mhamdi Alaoui, Chaofa Zhao, Wenbo Niu, Pierre‐Yves Hicher
Most soils and rocks contain varying fractions of clay minerals within their solid matrix. These geomaterials can exhibit a significant swelling potential toward chemo‐thermo‐hydromechanical loadings. Several multiscale modeling techniques have been developed to ascertain their swelling behavior across various scales, with molecular dynamics (MD), micromechanics‐based approaches, and double‐porosity models being the most common. MD simulation is a computational technique that applies Newton's second law of motion to depict the movement of particles within a granular system. Micromechanics‐based approaches upscale the poro‐elasticity law from the clay layer level to the sample scale through homogenization. Dual‐porosity models are generally based on elasto‐plasticity, incorporating different hydro‐mechanical laws at two distinct scales. These models have been extensively used, particularly for clayey soils and bentonites, though their application to clayey rocks has not been reported in the literature. Although their significant contribution to the understanding of clay swelling behavior, these techniques have been insufficiently reviewed, compared, and discussed mutually in the literature. This paper aims to provide a cross‐look on these multiscale approaches by presenting the theoretical background of existing formulations, highlighting breakthrough results, discussing major differences and current challenges, and proposing future perspectives.
中文翻译:
不同尺度的粘土质地质材料的膨胀行为建模:进展与挑战
大多数土壤和岩石在其固体基质中含有不同比例的粘土矿物。这些土工材料对化学-热-流体力学载荷表现出显着的膨胀潜力。已经开发了几种多尺度建模技术来确定它们在不同尺度上的膨胀行为,其中分子动力学 (MD)、基于微观力学的方法和双孔隙率模型是最常见的。MD 模拟是一种计算技术,它应用牛顿第二运动定律来描述粒子系统内粒子的运动。基于微观力学的方法通过均质化将多孔弹性定律从粘土层水平提升到样品尺度。双孔隙度模型通常基于弹塑性,在两个不同的尺度上结合了不同的水力学定律。这些模型已被广泛使用,特别是用于粘土质土壤和膨润土,尽管文献中尚未报道它们应用于粘土质岩石。尽管它们对理解粘土膨胀行为做出了重大贡献,但这些技术在文献中没有得到充分的审查、比较和讨论。本文旨在通过介绍现有公式的理论背景、突出突破性结果、讨论主要差异和当前挑战以及提出未来前景,对这些多尺度方法进行交叉观察。
更新日期:2024-10-30
中文翻译:
不同尺度的粘土质地质材料的膨胀行为建模:进展与挑战
大多数土壤和岩石在其固体基质中含有不同比例的粘土矿物。这些土工材料对化学-热-流体力学载荷表现出显着的膨胀潜力。已经开发了几种多尺度建模技术来确定它们在不同尺度上的膨胀行为,其中分子动力学 (MD)、基于微观力学的方法和双孔隙率模型是最常见的。MD 模拟是一种计算技术,它应用牛顿第二运动定律来描述粒子系统内粒子的运动。基于微观力学的方法通过均质化将多孔弹性定律从粘土层水平提升到样品尺度。双孔隙度模型通常基于弹塑性,在两个不同的尺度上结合了不同的水力学定律。这些模型已被广泛使用,特别是用于粘土质土壤和膨润土,尽管文献中尚未报道它们应用于粘土质岩石。尽管它们对理解粘土膨胀行为做出了重大贡献,但这些技术在文献中没有得到充分的审查、比较和讨论。本文旨在通过介绍现有公式的理论背景、突出突破性结果、讨论主要差异和当前挑战以及提出未来前景,对这些多尺度方法进行交叉观察。