当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual-drive acoustic micromixer for rapid nucleation and ultrafast growth of perovskite nanoparticles
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-10-30 , DOI: 10.1039/d4lc00721b
Zhifang Liu, Yuwen Lu, Wei Tan, Guorui Zhu

All-inorganic cesium lead halide perovskites have garnered significant attention owing to their favorable optical properties. Microfluidics-based acoustic mixers are capable of achieving rapid nucleation and ultrafast growth kinetics. Nevertheless, conventional acoustic mixers rely on the response of microstructures to the acoustic field for mixing fluids, the majority of these disturbances occur in the central region of the channel, with minimal impact on the fluid within the side walls. This paper proposes a novel acoustic mixer that combines the effects of sharp corners and bubbles in response to the acoustic field, thereby producing effective disturbance of the fluid throughout the channel. The combined effect enables the micromixer to achieve complete mixing at different inlet flow ratios with mixing times as low as 5 ms. The superiority of acoustic mixers in controlling the nanocrystal formation stage was further validated through the synthesis of chalcogenide nanocrystals using the LARP method. The millisecond mixing time facilitated the rapid formation of nanocrystals and their subsequent rapid growth. The results demonstrate that the green luminescence intensity at 520 nm of the samples synthesized using the acoustic micromixer is 118% higher than that of the samples synthesized using an intermittent reactor. The novel micromixer broadens the range of applications and offers a promising avenue for the large-scale continuous synthesis of high-quality lead-halide perovskite nanocrystals (NCs).

中文翻译:


用于钙钛矿纳米颗粒快速成核和超快速生长的双驱动声学微混合器



全无机铯卤化铅钙钛矿因其良好的光学特性而受到广泛关注。基于微流体的声波混合器能够实现快速成核和超快生长动力学。然而,传统的声学混合器依赖于微结构对声场的响应来混合流体,这些干扰大多发生在通道的中心区域,对侧壁内的流体的影响最小。本文提出了一种新型声学混合器,它结合了响应声场的尖角和气泡的影响,从而在整个通道中产生对流体的有效干扰。综合效应使微混合器能够在不同的入口流速比下实现完全混合,混合时间低至 5 ms。通过使用 LARP 方法合成硫属化物纳米晶,进一步验证了声混频器在控制纳米晶体形成阶段方面的优越性。毫秒级混合时间促进了纳米晶体的快速形成和随后的快速生长。结果表明,使用声学微混匀器合成的样品在 520 nm 处的绿色发光强度比使用间歇反应器合成的样品高 118%。这种新型微混合器拓宽了应用范围,并为大规模连续合成高质量的卤化铅钙钛矿纳米晶 (NC) 提供了一条有前途的途径。
更新日期:2024-10-30
down
wechat
bug