当前位置:
X-MOL 学术
›
Phys. Rev. X
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Scalable Architecture for Trapped-Ion Quantum Computing Using rf Traps and Dynamic Optical Potentials
Physical Review X ( IF 11.6 ) Pub Date : 2024-10-21 , DOI: 10.1103/physrevx.14.041017 David Schwerdt, Lee Peleg, Yotam Shapira, Nadav Priel, Yanay Florshaim, Avram Gross, Ayelet Zalic, Gadi Afek, Nitzan Akerman, Ady Stern, Amit Ben Kish, Roee Ozeri
Physical Review X ( IF 11.6 ) Pub Date : 2024-10-21 , DOI: 10.1103/physrevx.14.041017 David Schwerdt, Lee Peleg, Yotam Shapira, Nadav Priel, Yanay Florshaim, Avram Gross, Ayelet Zalic, Gadi Afek, Nitzan Akerman, Ady Stern, Amit Ben Kish, Roee Ozeri
Qubits based on ions trapped in linear radio-frequency traps form a successful platform for quantum computing, due to their high fidelity of operations, all-to-all connectivity, and degree of local control. In principle, there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register. However, in practice, there are two main issues associated with long trapped-ion crystals, that stem from the “softening” of their modes of motion, upon scaling up: high heating rates of the ions’ motion and a dense motional spectrum; both impede the performance of high-fidelity qubit operations. Here, we propose a holistic, scalable architecture for quantum computing with large ion crystals that overcomes these issues. Our method relies on dynamically operated optical potentials that instantaneously segment the ion crystal into cells of a manageable size. We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells. The ability to reconfigure the optical potentials guarantees connectivity across the full ion crystal and also enables efficient midcircuit measurements. We study the implementation of large-scale parallel multiqubit entangling gates that operate simultaneously on all cells and present a protocol to compensate for crosstalk errors, enabling full-scale usage of an extensively large register. We illustrate that this architecture is advantageous both for fault-tolerant digital quantum computation and for analog quantum simulations.
中文翻译:
使用 RF 阱和动态光势进行阱离子量子计算的可扩展架构
基于捕获在线性射频阱中的离子的量子比特构成了一个成功的量子计算平台,因为它们具有高保真操作、多对多连接性和本地控制程度。原则上,可以限制在单个 1D 寄存器中的基于离子的量子比特的数量没有基本限制。然而,在实践中,与长捕获离子晶体相关的两个主要问题,这些问题源于它们在放大时运动模式的“软化”:离子运动的高热速率和密集的运动光谱;两者都会阻碍高保真量子比特运算的性能。在这里,我们提出了一种整体的、可扩展的量子计算架构,具有大型离子晶体来克服这些问题。我们的方法依赖于动态操作的光势,该光势可立即将离子晶体分割成可管理大小的细胞。我们表明,这些单元的行为几乎是独立的量子寄存器,允许在所有单元上存在平行的纠缠门。重新配置光势的能力保证了整个离子晶体的连通性,还实现了高效的中电路测量。我们研究了大规模并行多量子比特纠缠门的实现,这些门同时在所有单元上运行,并提出了一种补偿串扰误差的协议,从而能够全面使用非常大的寄存器。我们说明,这种架构对于容错数字量子计算和模拟量子模拟都是有利的。
更新日期:2024-10-21
中文翻译:
使用 RF 阱和动态光势进行阱离子量子计算的可扩展架构
基于捕获在线性射频阱中的离子的量子比特构成了一个成功的量子计算平台,因为它们具有高保真操作、多对多连接性和本地控制程度。原则上,可以限制在单个 1D 寄存器中的基于离子的量子比特的数量没有基本限制。然而,在实践中,与长捕获离子晶体相关的两个主要问题,这些问题源于它们在放大时运动模式的“软化”:离子运动的高热速率和密集的运动光谱;两者都会阻碍高保真量子比特运算的性能。在这里,我们提出了一种整体的、可扩展的量子计算架构,具有大型离子晶体来克服这些问题。我们的方法依赖于动态操作的光势,该光势可立即将离子晶体分割成可管理大小的细胞。我们表明,这些单元的行为几乎是独立的量子寄存器,允许在所有单元上存在平行的纠缠门。重新配置光势的能力保证了整个离子晶体的连通性,还实现了高效的中电路测量。我们研究了大规模并行多量子比特纠缠门的实现,这些门同时在所有单元上运行,并提出了一种补偿串扰误差的协议,从而能够全面使用非常大的寄存器。我们说明,这种架构对于容错数字量子计算和模拟量子模拟都是有利的。