当前位置:
X-MOL 学术
›
Acc. Mater. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Methodologies to Improve the Stability of High-Efficiency Perovskite Solar Cells
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-10-30 , DOI: 10.1021/accountsmr.4c00237 Sanjay Sandhu, Nam-Gyu Park
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-10-30 , DOI: 10.1021/accountsmr.4c00237 Sanjay Sandhu, Nam-Gyu Park
Organic–inorganic lead halide perovskite solar cells (PSCs) have attracted significant interest from the photovoltaic (PV) community due to suitable optoelectronic properties, low manufacturing cost, and tremendous PV performance with a certified power conversion efficiency (PCE) of up to 26.5%. However, long-term operational stability should be guaranteed for future commercialization. Over the past decade, intensive research has focused on improving the PV performance and device stability through the development of novel charge transport materials, additive engineering, compositional engineering, interfacial modifications, and the synthesis of perovskite single crystals. In this Account, we provide a comprehensive overview of recent progress and research directions in the fabrication of highly efficient and stable PSCs, including key outcomes from our group. We begin by highlighting the critical challenges and their causes that are detrimental to the development of stable PSCs. We then discuss the fundamentals of halide perovskites including their optical and structural properties. This is followed by a description of the fabrication methods for perovskite crystals, films, and various device architectures. Next, we introduced target-oriented key strategies such as developing high-quality single crystals for redissolution as a perovskite precursor to fabricate phase-stable and reproducible PSCs, along with reduced material costs, employing multifunctional additives to get uniform, robust, and stable perovskite films, and interfacial engineering techniques for effective surface and buried interface defect passivation to improve charge transport and long-term stability. Finally, we conclude with a critical assessment and perspective on the future development of PSCs. This Account will provide valuable insights into the current state-of-the-art PSCs and promising strategies tailored to specific roles that can be combined to manipulate the perovskite structure for novel outcomes and further advancements.
中文翻译:
提高高效钙钛矿太阳能电池稳定性的方法
有机-无机氢化铅钙钛矿太阳能电池 (PSC) 因其合适的光电特性、低制造成本和巨大的光伏性能以及高达 26.5% 的认证功率转换效率 (PCE) 而引起了光伏 (PV) 界的极大兴趣。但是,应保证长期运行稳定性,以便将来实现商业化。在过去的十年中,深入研究的重点是通过开发新型电荷传输材料、增材工程、成分工程、界面改性和钙钛矿单晶的合成来提高 PV 性能和器件稳定性。在本报告中,我们全面概述了制造高效和稳定的 PSC 的最新进展和研究方向,包括我们小组的主要成果。我们首先强调不利于稳定 PSC 发展的关键挑战及其原因。然后,我们讨论了卤化物钙钛矿的基本原理,包括它们的光学和结构特性。接下来描述了钙钛矿晶体、薄膜和各种器件架构的制造方法。接下来,我们介绍了以目标为导向的关键策略,例如开发高质量的单晶作为钙钛矿前驱体进行再溶解,以制造相位稳定且可重复的 PSC,同时降低材料成本,采用多功能添加剂获得均匀、稳健和稳定的钙钛矿薄膜,以及用于有效表面和埋藏界面缺陷钝化的界面工程技术,以改善电荷传输和长期稳定性。最后,我们对 PSC 的未来发展进行了批判性评估和观点。 该账户将提供对当前最先进的 PSC 和针对特定角色量身定制的有前途的策略的宝贵见解,这些策略可以结合起来操纵钙钛矿结构以获得新的结果和进一步的进步。
更新日期:2024-10-30
中文翻译:
提高高效钙钛矿太阳能电池稳定性的方法
有机-无机氢化铅钙钛矿太阳能电池 (PSC) 因其合适的光电特性、低制造成本和巨大的光伏性能以及高达 26.5% 的认证功率转换效率 (PCE) 而引起了光伏 (PV) 界的极大兴趣。但是,应保证长期运行稳定性,以便将来实现商业化。在过去的十年中,深入研究的重点是通过开发新型电荷传输材料、增材工程、成分工程、界面改性和钙钛矿单晶的合成来提高 PV 性能和器件稳定性。在本报告中,我们全面概述了制造高效和稳定的 PSC 的最新进展和研究方向,包括我们小组的主要成果。我们首先强调不利于稳定 PSC 发展的关键挑战及其原因。然后,我们讨论了卤化物钙钛矿的基本原理,包括它们的光学和结构特性。接下来描述了钙钛矿晶体、薄膜和各种器件架构的制造方法。接下来,我们介绍了以目标为导向的关键策略,例如开发高质量的单晶作为钙钛矿前驱体进行再溶解,以制造相位稳定且可重复的 PSC,同时降低材料成本,采用多功能添加剂获得均匀、稳健和稳定的钙钛矿薄膜,以及用于有效表面和埋藏界面缺陷钝化的界面工程技术,以改善电荷传输和长期稳定性。最后,我们对 PSC 的未来发展进行了批判性评估和观点。 该账户将提供对当前最先进的 PSC 和针对特定角色量身定制的有前途的策略的宝贵见解,这些策略可以结合起来操纵钙钛矿结构以获得新的结果和进一步的进步。