当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Halide solid electrolytes in all-solid-state batteries: Ion transport kinetics, failure mechanisms and improvement strategies
Nano Energy ( IF 16.8 ) Pub Date : 2024-10-31 , DOI: 10.1016/j.nanoen.2024.110435 Ruonan Xu, Yurong Wu, Zhaoyang Dong, Runguo Zheng, Zhishuang Song, Zhiyuan Wang, Hongyu Sun, Yanguo Liu, Long Zhang
Nano Energy ( IF 16.8 ) Pub Date : 2024-10-31 , DOI: 10.1016/j.nanoen.2024.110435 Ruonan Xu, Yurong Wu, Zhaoyang Dong, Runguo Zheng, Zhishuang Song, Zhiyuan Wang, Hongyu Sun, Yanguo Liu, Long Zhang
Halide solid electrolytes (SEs) have emerged as a prominent area of research interest due to their exceptional properties. Currently, there is growing interest in halide SEs, driven by optimized structural frameworks, advanced synthesis methods, and enhanced physico-mechanical deformability rooted in halogen chemistry. In this paper, we devote to describing the mechanism of ion transport kinetics in halide SEs, while also presenting an overview of the current research status and future development prospects in halide-based all-solid-state batteries (ASSBs). The application of modeling and theoretical calculations has provided a significant impetus to the field. In addition, it presents a summary of the potential sources of ion transport failure in halide SEs and the electrode|SE interface, and proposes effective strategies to address these issues. Ultimately, this paper provides a forward-looking perspective on prospective avenues of research in halide SEs, drawing insights from investigations into cycle stability and rapid ion conduction in this field. The review promotes our understanding on the dynamics of fast ion conduction in halide SEs, which offers valuable insights to guide the development of innovative halide SEs.
中文翻译:
全固态电池中的卤化物固体电解质:离子传输动力学、失效机制和改进策略
卤化物固体电解质 (SEs) 由于其卓越的性能而成为研究关注的重要领域。目前,在优化的结构框架、先进的合成方法和植根于卤素化学的增强物理机械变形能力的推动下,人们对卤化物 SE 的兴趣越来越大。在本文中,我们致力于描述卤化物 SEs 中离子传输动力学的机制,同时概述了卤化物基全固态电池 (ASSBs) 的研究现状和未来发展前景。建模和理论计算的应用为该领域提供了巨大的推动力。此外,本文还总结了卤化物 SE 和 electrode|SE 界面中离子传输失败的潜在来源,并提出了解决这些问题的有效策略。最终,本文为卤化物 SE 的前瞻性研究途径提供了前瞻性的视角,从对该领域循环稳定性和快速离子传导的研究中汲取见解。本综述促进了我们对卤化物 SE 中快速离子传导动力学的理解,为指导创新卤化物 SE 的开发提供了有价值的见解。
更新日期:2024-10-31
中文翻译:
全固态电池中的卤化物固体电解质:离子传输动力学、失效机制和改进策略
卤化物固体电解质 (SEs) 由于其卓越的性能而成为研究关注的重要领域。目前,在优化的结构框架、先进的合成方法和植根于卤素化学的增强物理机械变形能力的推动下,人们对卤化物 SE 的兴趣越来越大。在本文中,我们致力于描述卤化物 SEs 中离子传输动力学的机制,同时概述了卤化物基全固态电池 (ASSBs) 的研究现状和未来发展前景。建模和理论计算的应用为该领域提供了巨大的推动力。此外,本文还总结了卤化物 SE 和 electrode|SE 界面中离子传输失败的潜在来源,并提出了解决这些问题的有效策略。最终,本文为卤化物 SE 的前瞻性研究途径提供了前瞻性的视角,从对该领域循环稳定性和快速离子传导的研究中汲取见解。本综述促进了我们对卤化物 SE 中快速离子传导动力学的理解,为指导创新卤化物 SE 的开发提供了有价值的见解。