当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Solvation and interface engineering for stable operation of lithium metal batteries under harsh conditions
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-10-30 , DOI: 10.1016/j.ensm.2024.103875 Yehui Wu, Xihao Wang, Kun Zhang, Hankun Wang, Xingyu Ma, Shengchuang Du, Tiansheng Bai, Jiawen Huang, Deping Li, Lijie Ci, Jingyu Lu
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-10-30 , DOI: 10.1016/j.ensm.2024.103875 Yehui Wu, Xihao Wang, Kun Zhang, Hankun Wang, Xingyu Ma, Shengchuang Du, Tiansheng Bai, Jiawen Huang, Deping Li, Lijie Ci, Jingyu Lu
Stable operation of lithium (Li) metal batteries (LMBs) under harsh conditions (e.g. , at high rates, at extreme temperatures, and with water-containing electrolytes) has been suffering from the sluggish charge transfer kinetics at electrode-electrolyte interfaces, and limited thermodynamic stability in general carbonate electrolytes. Herein, lithium nitrate (LiNO3 ) and N,N ’-dimethylpropyleneure (DMPU) are incorporated into a commercial carbonate electrolyte to address these challenges, it significantly changed the electrolyte solvation chemistry to enhance the electrolyte's moisture tolerance and thermal stability, and lead to nitrided interfaces (including inorganic and organic nitrides) that boost interfacial kinetics and stability. Consequently, the excellent electrochemical performance is achieved with Li||Li symmetric cells, Li||Cu half cells, and Li||LiFePO4 full cells, under harsh conditons. The Li||LiFePO4 full cell shows a capacity retention of ∼86.0 % after 8100 cycles at 30C, and they could even cycle stably at temperatures as high as 60 °C and as low as −15 °C; besides, even if using the electrolyte containing 2 % water, the full cell delivers a capacity retention of ∼95.3 % after 5000 cycles at 10C. This work elucidates the correlations between electrolyte solvation chemistry, electrode interface composition, and battery performance, paving a way for realising stable LMBs under harsh conditions.
中文翻译:
用于锂金属电池在恶劣条件下稳定运行的溶剂化和接口工程
锂 (Li) 金属电池 (LMB) 在恶劣条件下(例如,在高速率、极端温度和含水电解质下)的稳定运行一直受到电极-电解质界面电荷转移动力学缓慢和一般碳酸盐电解质中热力学稳定性有限的影响。在这里,硝酸锂 (LiNO3) 和 N,N'-二甲基丙烯脲 (DMPU) 被掺入商业碳酸盐电解质中以应对这些挑战,它显着改变了电解质溶剂化化学,以增强电解质的耐湿性和热稳定性,并导致氮化界面(包括无机和有机氮化物)提高界面动力学和稳定性。因此,使用 Li||Li 对称单元,Li||Cu 半电池和 Li||LiFePO4 全电池,在恶劣的条件下。李 ||LiFePO4 全电池在 30C 下循环 8100 次后显示出 ∼86.0% 的容量保持率,它们甚至可以在高达 60 °C 和低至 -15 °C 的温度下稳定循环;此外,即使使用含水 2% 的电解液,全电池在 10C 下循环 5000 次后也能提供 ∼95.3% 的容量保持率。这项工作阐明了电解质溶剂化化学、电极界面组成和电池性能之间的相关性,为在恶劣条件下实现稳定的 LMB 铺平了道路。
更新日期:2024-10-30
中文翻译:
用于锂金属电池在恶劣条件下稳定运行的溶剂化和接口工程
锂 (Li) 金属电池 (LMB) 在恶劣条件下(例如,在高速率、极端温度和含水电解质下)的稳定运行一直受到电极-电解质界面电荷转移动力学缓慢和一般碳酸盐电解质中热力学稳定性有限的影响。在这里,硝酸锂 (LiNO3) 和 N,N'-二甲基丙烯脲 (DMPU) 被掺入商业碳酸盐电解质中以应对这些挑战,它显着改变了电解质溶剂化化学,以增强电解质的耐湿性和热稳定性,并导致氮化界面(包括无机和有机氮化物)提高界面动力学和稳定性。因此,使用 Li||Li 对称单元,Li||Cu 半电池和 Li||LiFePO4 全电池,在恶劣的条件下。李 ||LiFePO4 全电池在 30C 下循环 8100 次后显示出 ∼86.0% 的容量保持率,它们甚至可以在高达 60 °C 和低至 -15 °C 的温度下稳定循环;此外,即使使用含水 2% 的电解液,全电池在 10C 下循环 5000 次后也能提供 ∼95.3% 的容量保持率。这项工作阐明了电解质溶剂化化学、电极界面组成和电池性能之间的相关性,为在恶劣条件下实现稳定的 LMB 铺平了道路。