当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
For elements-utilization regeneration of spent LiFePO4: Designed basic precursors for advanced polycrystal electrode materials
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-10-30 , DOI: 10.1016/j.ensm.2024.103863 Shuya Lei, Wenqing Zhao, Jiexiang Li, Shaole Song, Wei Sun, Peng Ge, Yue Yang
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-10-30 , DOI: 10.1016/j.ensm.2024.103863 Shuya Lei, Wenqing Zhao, Jiexiang Li, Shaole Song, Wei Sun, Peng Ge, Yue Yang
Spent lithium iron phosphate (LFP) is commonly recovered by hydrometallurgy to prepare Li2 CO3 and FePO4 , but suffering from long process and low value-added products. Hydrothermal method avoids element separation and regenerates LFP materials directly from leaching solution of spent LFP. However, it requires three-time the theoretical amount of lithium. In this study, using LiFePO4 (OH) (LFPOH) as a medium, LFP materials were regenerated with theoretical amount of lithium in virtue of energetically favorable reaction of Li-ions into the internal structure. The formation mechanism of LFPOH and LFP materials were investigated, and advanced polycrystal LFP materials with fast ions-diffusion ability and high reversibility were obtained. The capacities of recovered LFP materials are 156.17 mAh g−1 , 148.51 mAh g−1 , 138.34 mAh g−1 , 124.1 mAh g−1 at 0.2 C, 0.5 C, 1 C and 2 C, respectively and their capacity could be remained 139.92 mAh g−1 at 1 C with retention of almost 100 % after 200 cycles. Moreover, with the assistance of economic analysis, the designed regenerated path displayed considerable recycling value-potential, especially the reducing of Li-resources (from three-time to one-time). This study sheds light on designing polycrystal recovered LFP with help of basic medium, whilst provides an effective strategy for preparing high-performance LFP materials.
中文翻译:
用于废 LiFePO4 的元素利用再生:为先进的多晶电极材料设计的基本前驱体
废磷酸铁锂 (LFP) 通常通过湿法冶金回收以制备 Li2CO3 和 FePO4,但加工时间长,产品附加值低。水热法避免了元素分离,并直接从废 LFP 的浸出液中再生 LFP 材料。但是,它需要的锂含量是理论用量的三倍。在本研究中,以 LiFePO4(OH) (LFPOH) 为介质,LFP 材料凭借锂离子的能量有利反应到内部结构中,用理论量的锂进行再生。研究了 LFPOH 和 LFP 材料的形成机理,获得了具有快速离子扩散能力和高可逆性的先进多晶 LFP 材料。回收的 LFP 材料的容量在 0.2 C、0.5 C、1 C 和 2 C 时分别为 156.17 mAh g-1、148.51 mAh g-1、138.34 mAh g-1、124.1 mAh g-1,它们的容量在 1 C 时可以保持 139.92 mAh g-1,在 200 次循环后保留率几乎为 100%。此外,在经济分析的帮助下,设计的再生路径显示出相当大的回收价值潜力,尤其是锂资源的减少(从三次减少到一次)。本研究阐明了借助碱性介质设计多晶回收的 LFP,同时为制备高性能 LFP 材料提供了一种有效的策略。
更新日期:2024-10-30
中文翻译:
用于废 LiFePO4 的元素利用再生:为先进的多晶电极材料设计的基本前驱体
废磷酸铁锂 (LFP) 通常通过湿法冶金回收以制备 Li2CO3 和 FePO4,但加工时间长,产品附加值低。水热法避免了元素分离,并直接从废 LFP 的浸出液中再生 LFP 材料。但是,它需要的锂含量是理论用量的三倍。在本研究中,以 LiFePO4(OH) (LFPOH) 为介质,LFP 材料凭借锂离子的能量有利反应到内部结构中,用理论量的锂进行再生。研究了 LFPOH 和 LFP 材料的形成机理,获得了具有快速离子扩散能力和高可逆性的先进多晶 LFP 材料。回收的 LFP 材料的容量在 0.2 C、0.5 C、1 C 和 2 C 时分别为 156.17 mAh g-1、148.51 mAh g-1、138.34 mAh g-1、124.1 mAh g-1,它们的容量在 1 C 时可以保持 139.92 mAh g-1,在 200 次循环后保留率几乎为 100%。此外,在经济分析的帮助下,设计的再生路径显示出相当大的回收价值潜力,尤其是锂资源的减少(从三次减少到一次)。本研究阐明了借助碱性介质设计多晶回收的 LFP,同时为制备高性能 LFP 材料提供了一种有效的策略。