当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of 3D printed MXene electrodes on energy storage: Different dimensionalities, electrochemistry and performance optimization of printable MXene ink
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-10-29 , DOI: 10.1016/j.ensm.2024.103873
Chandan Kumar Maity, Shrabani De, Amrita De Adhikari, Annu Kumari, Kartikey Verma, Md Moniruzzaman, Sumanta Sahoo

MXene and 3D printing technology are the pioneers of modern energy-related research. 3D printing, or, additive manufacturing has garnered a lot of devotion because of its ease of use and speed in producing simple prototypes. Nevertheless, MXenes, similar to other 2D materials, show an agglomeration tendency, which restricts electrolyte flow and utilization of the effective surface area. They easily oxidize at high anode potentials also, which additionally lowers the stability of the electrode. An effective way to overcome these problems is to rationally design and create MXene-based electrodes employing 3D printing technology for energy storage, which is a programmed-based manufacturing method that can regulate scalability, product design, and reproducibility. Additionally, there is a huge demand for printable, wearable, and stretchable electronic devices for energy storage. Regarding this, 3D printing technology has shown satisfactory potentiality for constructing high-performance energy storage electrodes and devices. Herein, the recent advancements in 3D printing technologies for constructing advanced MXene-based electrodes for energy storage applications are highlighted. Moreover, the dimensionalities and electrochemistry of different MXenes are emphasized briefly. This review also summarizes the performance optimizations for the printable MXene inks to fabricate efficient 3D-printed electrodes for supercapacitors and secondary batteries. The current application of 3D-printable MXene-based electrodes for supercapacitors and secondary batteries is extensively reviewed. Finally, this article concludes with the future directions and existing research challenges in this field.

中文翻译:


3D 打印 MXene 电极对储能的影响:可打印 MXene 墨水的不同维度、电化学和性能优化



MXene 和 3D 打印技术是现代能源相关研究的先驱。3D 打印或增材制造因其易用性和生产简单原型的速度而获得了很多奉献。然而,与其他 2D 材料类似,MXenes 表现出团聚趋势,这限制了电解质的流动和有效表面积的利用。它们在高阳极电位下也很容易氧化,这进一步降低了电极的稳定性。克服这些问题的有效方法是合理设计和制造基于 MXene 的电极,采用 3D 打印技术进行储能,这是一种基于程序化的制造方法,可以调节可扩展性、产品设计和可重复性。此外,对用于储能的可打印、可穿戴和可拉伸电子设备的需求巨大。在这方面,3D 打印技术在构建高性能储能电极和设备方面显示出令人满意的潜力。本文重点介绍了用于构建用于储能应用的先进基于 MXene 的电极的 3D 打印技术的最新进展。此外,还简要强调了不同 MXenes 的维度和电化学。本文还总结了可打印 MXene 油墨的性能优化,以制造用于超级电容器和二次电池的高效 3D 打印电极。目前可 3D 打印的基于 MXene 的电极在超级电容器和二次电池中的应用得到了广泛的回顾。最后,本文总结了该领域的未来方向和现有研究挑战。
更新日期:2024-10-29
down
wechat
bug