当前位置:
X-MOL 学术
›
J. Geophys. Res. Solid Earth
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mitigation and Optimization of Induced Seismicity Using Physics-Based Forecasting
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2024-10-29 , DOI: 10.1029/2024jb028759 Ryley G. Hill, Matthew Weingarten, Cornelius Langenbruch, Yuri Fialko
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2024-10-29 , DOI: 10.1029/2024jb028759 Ryley G. Hill, Matthew Weingarten, Cornelius Langenbruch, Yuri Fialko
Fluid injection can induce seismicity by altering stresses on pre-existing faults. Here, we investigate minimizing induced earthquake potential by optimizing injection operations in a physics-based forecasting framework. We built a 3D finite element model of the poroelastic crust for the Raton Basin, Central US, and used it to estimate time dependent Coulomb stress changes due to 25 years of wastewater injection in the region. Our finite element model is complemented by a statistical analysis of the seismogenic index (SI), a proxy for critically stressed faults affected by variations in the pore pressure. Forecasts of seismicity rate from our hybrid physics-based statistical model suggest that induced seismicity in the Raton Basin, from 2001 to 2022, is still driven by wastewater injection despite declining injection rates since 2011. Our model suggests that pore pressure diffusion is the dominant cause of Coulomb stress changes at seismogenic depth, with poroelastic stress changes contributing about 5% to the driving force. Linear programming optimization for the Raton Basin reveals that it is feasible to reduce earthquake potential for a given amount of injected fluid (safety objective) or maximize fluid injection for a prescribed earthquake potential (economic objective). The optimization tends to spread out high-rate injectors and shift them to regions of lower SI. The framework has practical importance as a tool to manage injection rate per unit field area to reduce induced earthquake potential. Our optimization framework is both flexible and adaptable to mitigate induced earthquake potential in other regions and for other types of subsurface fluid injection.
中文翻译:
使用基于物理的预报减轻和优化诱发地震
流体注入可以通过改变预先存在的断层上的应力来诱发地震。在这里,我们通过在基于物理的预测框架中优化注入操作来研究最小化诱发地震的可能性。我们为美国中部的拉顿盆地构建了多孔弹性地壳的 3D 有限元模型,并使用它来估计由于该地区 25 年的废水注入而导致的 随时间变化的库仑应力变化。我们的有限元模型由地震指数 (SI) 的统计分析补充,SI 是受孔隙压力变化影响的临界应力断层的代表。我们基于混合物理学的统计模型对地震率的预测表明,尽管自 2011 年以来注入率下降,但从 2001 年到 2022 年,拉顿盆地的诱发地震仍然由废水注入驱动。我们的模型表明,孔隙压力扩散是地震深度库仑应力变化的主要原因,多孔弹性应力变化对驱动力的贡献约为 5%。Raton 盆地的线性规划优化表明,对于给定的注入流体量(安全目标)或最大化指定地震潜力的流体注入(经济目标)是可行的。优化倾向于分散高速率注入器并将它们转移到 SI 较低的区域。该框架作为管理每单位田面积注入速率以减少诱发地震可能性的工具具有实际意义。我们的优化框架既灵活又适应性强,可以减轻其他地区的诱发地震可能性和其他类型的地体注入。
更新日期:2024-10-30
中文翻译:
使用基于物理的预报减轻和优化诱发地震
流体注入可以通过改变预先存在的断层上的应力来诱发地震。在这里,我们通过在基于物理的预测框架中优化注入操作来研究最小化诱发地震的可能性。我们为美国中部的拉顿盆地构建了多孔弹性地壳的 3D 有限元模型,并使用它来估计由于该地区 25 年的废水注入而导致的 随时间变化的库仑应力变化。我们的有限元模型由地震指数 (SI) 的统计分析补充,SI 是受孔隙压力变化影响的临界应力断层的代表。我们基于混合物理学的统计模型对地震率的预测表明,尽管自 2011 年以来注入率下降,但从 2001 年到 2022 年,拉顿盆地的诱发地震仍然由废水注入驱动。我们的模型表明,孔隙压力扩散是地震深度库仑应力变化的主要原因,多孔弹性应力变化对驱动力的贡献约为 5%。Raton 盆地的线性规划优化表明,对于给定的注入流体量(安全目标)或最大化指定地震潜力的流体注入(经济目标)是可行的。优化倾向于分散高速率注入器并将它们转移到 SI 较低的区域。该框架作为管理每单位田面积注入速率以减少诱发地震可能性的工具具有实际意义。我们的优化框架既灵活又适应性强,可以减轻其他地区的诱发地震可能性和其他类型的地体注入。