当前位置:
X-MOL 学术
›
Coord. Chem. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transition metal-based heterojunctions for alkaline electrocatalytic water splitting
Coordination Chemistry Reviews ( IF 20.3 ) Pub Date : 2024-10-29 , DOI: 10.1016/j.ccr.2024.216287 Chengshuang Xu, Ying Hong, Zhong Li, Xiaotong Di, Wenjun Wang, Xiaochen Dong, Xiaozhou Mou
Coordination Chemistry Reviews ( IF 20.3 ) Pub Date : 2024-10-29 , DOI: 10.1016/j.ccr.2024.216287 Chengshuang Xu, Ying Hong, Zhong Li, Xiaotong Di, Wenjun Wang, Xiaochen Dong, Xiaozhou Mou
Electrocatalytic water splitting is an attractive strategy for generating hydrogen energy, involving the hydrogen evolution reaction (HER) at cathode and the oxygen evolution reaction (OER) at anode. Given the sluggish reaction kinetics often observed in alkaline electrolytes, there is a critical need for catalysts that can lower the energy barrier and accelerate the reaction rates. Transition metal-based catalysts hold significant potential to replace conventional noble metal catalysts due to their earth abundance, cost-effectiveness, and adjustable activity. To achieve electrocatalytic activity similar to, or even surpassing, that of precious metals, constructing heterogeneous structures proves to be an effective strategy. Within a heterojunction, the two components work synergistically to promote the electrocatalytic process. The lattice strain and electron transfer in a heterojunction can modulate the electronic structure of active sites, optimizing the adsorption of reaction intermediates and accelerating reaction kinetics. In this review, we offer an overview of the characteristics, types, characterization and synthesis methods of heterojunctions. Additionally, we delve into the application of heterojunctions in HER, OER, and overall water splitting. Finally, we present an overview of the existing challenges in developing heterojunctions and offer a perspective on the prospective utilization of heterojunctions for hydrogen generation.
中文翻译:
用于碱性电催化水分解的过渡金属基异质结
电催化分解水是一种有吸引力的氢能生成策略,涉及阴极的析氢反应 (HER) 和阳极的析氧反应 (OER)。鉴于在碱性电解质中经常观察到反应动力学缓慢,因此迫切需要能够降低能垒并加快反应速率的催化剂。过渡金属基催化剂具有替代传统贵金属催化剂的巨大潜力,因为它们的土壤丰富性、成本效益和可调节的活性。为了实现与贵金属相似甚至超过贵金属的电催化活性,构建非均相结构被证明是一种有效的策略。在异质结中,这两个组分协同作用以促进电催化过程。异质结中的晶格应变和电子转移可以调节活性位点的电子结构,优化反应中间体的吸附并加速反应动力学。在这篇综述中,我们概述了异质结的特性、类型、表征和合成方法。此外,我们还深入研究了异质结在 HER、OER 和整体水分解中的应用。最后,我们概述了开发异质结的现有挑战,并就异质结用于制氢的前景提供了展望。
更新日期:2024-10-29
中文翻译:
用于碱性电催化水分解的过渡金属基异质结
电催化分解水是一种有吸引力的氢能生成策略,涉及阴极的析氢反应 (HER) 和阳极的析氧反应 (OER)。鉴于在碱性电解质中经常观察到反应动力学缓慢,因此迫切需要能够降低能垒并加快反应速率的催化剂。过渡金属基催化剂具有替代传统贵金属催化剂的巨大潜力,因为它们的土壤丰富性、成本效益和可调节的活性。为了实现与贵金属相似甚至超过贵金属的电催化活性,构建非均相结构被证明是一种有效的策略。在异质结中,这两个组分协同作用以促进电催化过程。异质结中的晶格应变和电子转移可以调节活性位点的电子结构,优化反应中间体的吸附并加速反应动力学。在这篇综述中,我们概述了异质结的特性、类型、表征和合成方法。此外,我们还深入研究了异质结在 HER、OER 和整体水分解中的应用。最后,我们概述了开发异质结的现有挑战,并就异质结用于制氢的前景提供了展望。