当前位置: X-MOL 学术Genome Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Response to "Neglecting normalization impact in semi-synthetic RNA-seq data simulation generates artificial false positives" and "Winsorization greatly reduces false positives by popular differential expression methods when analyzing human population samples"
Genome Biology ( IF 10.1 ) Pub Date : 2024-10-30 , DOI: 10.1186/s13059-024-03232-8
Xinzhou Ge, Yumei Li, Wei Li, Jingyi Jessica Li

Two correspondences raised concerns or comments about our analyses regarding exaggerated false positives found by differential expression (DE) methods. Here, we discuss the points they raise and explain why we agree or disagree with these points. We add new analysis to confirm that the Wilcoxon rank-sum test remains the most robust method compared to the other five DE methods (DESeq2, edgeR, limma-voom, dearseq, and NOISeq) in two-condition DE analyses after considering normalization and winsorization, the data preprocessing steps discussed in the two correspondences.

中文翻译:


对“在半合成 RNA-seq 数据模拟中忽略归一化影响会产生人工假阳性”和“在分析人类群体样本时,通过流行的差异表达方法大大减少假阳性”的回应



两封信件对我们对差异表达 (DE) 方法发现的夸大假阳性的分析表示担忧或评论。在这里,我们讨论了他们提出的观点,并解释了我们为什么同意或不同意这些观点。我们添加了新的分析,以确认在考虑归一化和 winsorization(两个对应中讨论的数据预处理步骤)后,与其他五种 DE 方法 (DESeq2、edgeR、limma-voom、deearseq 和 NOISeq) 相比,Wilcoxon 秩和检验仍然是双条件 DE 分析中最稳健的方法。
更新日期:2024-10-30
down
wechat
bug