当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A donor:hole-transport layer alloy for high-efficiency and stable binary organic solar cells with promoted hole collection and suppressed recombination
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-10-29 , DOI: 10.1039/d4ee04072d Xianghui Zeng, Ting Xu, Hansheng Chen, Baoshen Deng, Qing Yan, Xuanlin Wen, Zijian Li, Haoxuan Zeng, Chuanlin Gao, Yaodong Xiao, Jiwei Liao, Hui Liu, Bin He, Peigang Han, Guangye Zhang, Shunpu Li, Yiwang Chen, Chen Xie
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-10-29 , DOI: 10.1039/d4ee04072d Xianghui Zeng, Ting Xu, Hansheng Chen, Baoshen Deng, Qing Yan, Xuanlin Wen, Zijian Li, Haoxuan Zeng, Chuanlin Gao, Yaodong Xiao, Jiwei Liao, Hui Liu, Bin He, Peigang Han, Guangye Zhang, Shunpu Li, Yiwang Chen, Chen Xie
Charge collection efficiency is primarily dependent on the interface layer in organic solar cells (OSCs), and minimizing the recombination at the interface can effectively suppress energy losses. A persistent challenge remains in the development of hole-transport materials that can establish an intimate contact with organic photoactive materials, primarily due to their hydrophilic nature. Here, we incorporated a water-based nanoparticle (NP)-containing donor material into the conventional PEDOT:PSS to fabricate a hole-transport layer (HTL) for OSC devices. This strategy creates an extensively intermixed donor:PEDOT:PSS alloy, which optimizes the work function, reduces energy loss, and significantly increases the interface area between the HTL and the photoactive layer. The alloy formation promotes high crystallinity in the active layer, facilitating charge collection and suppressing non-radiative recombination. OSCs fabricated based on this approach, particularly those using PM6:L8-BO, exhibited an efficiency of 19.9% (19.3% certified). An inverted device retained 95% of its initial efficiency after 1600 hours of continuous illumination, marking one of the best stability records for PM6:L8-BO-based OSCs. This novel approach addresses the incompatibility issues between the solution-processed HTLs and the active layers in OSCs, offering significant promise for future advancements in organic solar cell research about interface engineering.
中文翻译:
一种供体:用于高效稳定的二元有机太阳能电池的空穴传输层合金,具有促进空穴收集和抑制复合的作用
电荷收集效率主要取决于有机太阳能电池 (OSC) 中的界面层,最大限度地减少界面处的复合可以有效抑制能量损失。开发可以与有机光活性材料建立密切接触的空穴传输材料仍然存在一个持续的挑战,这主要是由于它们的亲水性。在这里,我们将含有水基纳米颗粒 (NP) 的供体材料掺入传统的 PEDOT:PSS 中,以制造用于 OSC 器件的空穴传输层 (HTL)。这种策略产生了一种广泛混合的供体:PEDOT:PSS 合金,它优化了功函数,减少了能量损失,并显着增加了 HTL 和光活性层之间的界面面积。合金的形成促进了活性层中的高结晶度,促进了电荷收集并抑制了非辐射复合。基于这种方法制造的 OSC,尤其是使用 PM6:L8-BO 的 OSC,表现出 19.9% 的效率(19.3% 认证)。倒置器件在连续照明 95 小时后仍保持了 1600% 的初始效率,这是基于 PM6:L8-BO 的 OSC 的最佳稳定性记录之一。这种新颖的方法解决了溶液处理的 HTL 与 OSC 中的活性层之间的不兼容性问题,为有机太阳能电池界面工程研究的未来发展提供了重要前景。
更新日期:2024-10-29
中文翻译:
一种供体:用于高效稳定的二元有机太阳能电池的空穴传输层合金,具有促进空穴收集和抑制复合的作用
电荷收集效率主要取决于有机太阳能电池 (OSC) 中的界面层,最大限度地减少界面处的复合可以有效抑制能量损失。开发可以与有机光活性材料建立密切接触的空穴传输材料仍然存在一个持续的挑战,这主要是由于它们的亲水性。在这里,我们将含有水基纳米颗粒 (NP) 的供体材料掺入传统的 PEDOT:PSS 中,以制造用于 OSC 器件的空穴传输层 (HTL)。这种策略产生了一种广泛混合的供体:PEDOT:PSS 合金,它优化了功函数,减少了能量损失,并显着增加了 HTL 和光活性层之间的界面面积。合金的形成促进了活性层中的高结晶度,促进了电荷收集并抑制了非辐射复合。基于这种方法制造的 OSC,尤其是使用 PM6:L8-BO 的 OSC,表现出 19.9% 的效率(19.3% 认证)。倒置器件在连续照明 95 小时后仍保持了 1600% 的初始效率,这是基于 PM6:L8-BO 的 OSC 的最佳稳定性记录之一。这种新颖的方法解决了溶液处理的 HTL 与 OSC 中的活性层之间的不兼容性问题,为有机太阳能电池界面工程研究的未来发展提供了重要前景。