当前位置: X-MOL 学术Rep. Prog. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum algorithms for scientific computing
Reports on Progress in Physics ( IF 19.0 ) Pub Date : 2024-10-29 , DOI: 10.1088/1361-6633/ad85f0
R Au-Yeung, B Camino, O Rathore, V Kendon

Quantum computing promises to provide the next step up in computational power for diverse application areas. In this review, we examine the science behind the quantum hype, and the breakthroughs required to achieve true quantum advantage in real world applications. Areas that are likely to have the greatest impact on high performance computing (HPC) include simulation of quantum systems, optimization, and machine learning. We draw our examples from electronic structure calculations and computational fluid dynamics which account for a large fraction of current scientific and engineering use of HPC. Potential challenges include encoding and decoding classical data for quantum devices, and mismatched clock speeds between classical and quantum processors. Even a modest quantum enhancement to current classical techniques would have far-reaching impacts in areas such as weather forecasting, aerospace engineering, and the design of ‘green’ materials for sustainable development. This requires significant effort from the computational science, engineering and quantum computing communities working together.

中文翻译:


用于科学计算的量子算法



量子计算有望为各种应用领域提供更高水平的计算能力。在这篇综述中,我们研究了量子炒作背后的科学,以及在实际应用中实现真正的量子优势所需的突破。可能对高性能计算 (HPC) 影响最大的领域包括量子系统模拟、优化和机器学习。我们从电子结构计算和计算流体动力学中汲取了示例,它们占当前 HPC 科学和工程使用的很大一部分。潜在的挑战包括对量子设备的经典数据进行编码和解码,以及经典处理器和量子处理器之间的时钟速度不匹配。即使是对当前经典技术的适度量子改进,也会对天气预报、航空航天工程和可持续发展的“绿色”材料设计等领域产生深远影响。这需要计算科学、工程和量子计算社区共同努力。
更新日期:2024-10-29
down
wechat
bug