当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Selectivity CO2 Mixture Separations by a Guanylated Polymer of Intrinsic Microporosity (PIM-G) Membrane
Macromolecules ( IF 5.1 ) Pub Date : 2024-10-28 , DOI: 10.1021/acs.macromol.4c01434 Samuel J. Kaser, Pablo Dean, Philippe Jean-Baptiste, Simar Kaur Mattewal, Taigyu Joo, Jing Ying Yeo, Zachary P. Smith
Macromolecules ( IF 5.1 ) Pub Date : 2024-10-28 , DOI: 10.1021/acs.macromol.4c01434 Samuel J. Kaser, Pablo Dean, Philippe Jean-Baptiste, Simar Kaur Mattewal, Taigyu Joo, Jing Ying Yeo, Zachary P. Smith
Membrane technology has the potential to replace thermal methods for gas separation, resulting in significant energy savings. However, materials with better combinations of permeability and selectivity are needed to fulfill industrial requirements. In this work, we functionalize a polymer of intrinsic microporosity with a high CO2 affinity guanidinium moiety to produce a highly CO2-permselective ionic polymer (PIM-G). Permeability–selectivity performance is compared under pure- and mixed-gas conditions for CO2/CH4, CO2/N2, and CO2/O2 gas pairs. In addition, counteranion identities are modified along the halide series (F–, Cl–, Br–, and I–) to optimize separation performance, with larger halides found to improve the CO2 permselectivity without a commensurate drop in the CO2 permeability.
中文翻译:
通过本征微孔隙率鸟苷化聚合物 (PIM-G) 膜进行高选择性 CO2 混合物分离
膜技术有可能取代热法进行气体分离,从而显著节省能源。然而,需要具有更好的渗透性和选择性组合的材料来满足工业要求。在这项工作中,我们将具有高 CO2 亲和力胍部分的固有微孔聚合物功能化,以生产高度 CO2 选择性离子聚合物 (PIM-G)。比较了 CO2/CH4、CO2/N2 和 CO2/O2 气体对在纯气体和混合气体条件下的渗透率-选择性性能。此外,沿卤化物系列(F–、Cl–、Br– 和 I–)修饰反阴离子特性以优化分离性能,发现较大的卤化物可以提高 CO2 选择性,而不会相应地降低 CO2 渗透性。
更新日期:2024-10-28
中文翻译:
通过本征微孔隙率鸟苷化聚合物 (PIM-G) 膜进行高选择性 CO2 混合物分离
膜技术有可能取代热法进行气体分离,从而显著节省能源。然而,需要具有更好的渗透性和选择性组合的材料来满足工业要求。在这项工作中,我们将具有高 CO2 亲和力胍部分的固有微孔聚合物功能化,以生产高度 CO2 选择性离子聚合物 (PIM-G)。比较了 CO2/CH4、CO2/N2 和 CO2/O2 气体对在纯气体和混合气体条件下的渗透率-选择性性能。此外,沿卤化物系列(F–、Cl–、Br– 和 I–)修饰反阴离子特性以优化分离性能,发现较大的卤化物可以提高 CO2 选择性,而不会相应地降低 CO2 渗透性。