Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multiple resiliency metrics reveal complementary drivers of ecosystem persistence: An application to kelp forest systems
Ecology ( IF 4.4 ) Pub Date : 2024-10-28 , DOI: 10.1002/ecy.4453 Jorge Arroyo‐Esquivel, Riley Adams, Sarah Gravem, Ross Whippo, Zachary Randell, Jason Hodin, Aaron W. E. Galloway, Brian Gaylord, Marissa L. Baskett
Ecology ( IF 4.4 ) Pub Date : 2024-10-28 , DOI: 10.1002/ecy.4453 Jorge Arroyo‐Esquivel, Riley Adams, Sarah Gravem, Ross Whippo, Zachary Randell, Jason Hodin, Aaron W. E. Galloway, Brian Gaylord, Marissa L. Baskett
Human‐caused global change produces biotic and abiotic conditions that increase the uncertainty and risk of failure of restoration efforts. A focus of managing for resiliency, that is, the ability of the system to respond to disturbance, has the potential to reduce this uncertainty and risk. However, identifying what drives resiliency might depend on how one measures it. An example of a system where identifying how the drivers of different aspects of resiliency can inform restoration under climate change is the northern coast of California, where kelp experienced a decline in coverage of over 95% due to the combination of an intense marine heat wave and the functional extinction of the primary predator of the kelp‐grazing purple sea urchin, the sunflower sea star. Although restoration efforts focused on urchin removal and kelp reintroduction in this system are ongoing, the question of how to increase the resiliency of this system to future marine heat waves remains open. In this paper, we introduce a dynamical model that describes a tritrophic food chain of kelp, purple urchins, and a purple urchin predator such as the sunflower sea star. We run a global sensitivity analysis of three different resiliency metrics (recovery likelihood, recovery rate, and resistance to disturbance) of the kelp forest to identify their ecological drivers. We find that each metric depends the most on a unique set of drivers: Recovery likelihood depends the most on live and drift kelp production, recovery rate depends the most on urchin production and feedbacks that determine urchin grazing on live kelp, and resistance depends the most on feedbacks that determine predator consumption of urchins. Therefore, an understanding of the potential role of predator reintroduction or recovery in kelp systems relies on a comprehensive approach to measuring resiliency.
中文翻译:
多个弹性指标揭示了生态系统持久性的互补驱动因素:海带森林系统的应用
人为造成的全球变化会产生生物和非生物条件,从而增加恢复工作的不确定性和失败的风险。弹性管理的重点,即系统响应干扰的能力,有可能减少这种不确定性和风险。但是,确定驱动弹性的因素可能取决于如何衡量弹性。确定不同方面的弹性驱动因素如何为气候变化下的恢复提供信息的系统示例是加利福尼亚州北部海岸,由于强烈的海洋热浪和以海带为食的紫色海胆的主要捕食者的功能灭绝,海带的覆盖率下降了 95% 以上, 向日葵海星。尽管恢复工作的重点是清除海胆和重新引入该系统,但如何提高该系统对未来海洋热浪的适应能力的问题仍然存在。在本文中,我们介绍了一个动力学模型,该模型描述了海带、紫海胆和紫海胆捕食者(如向日葵海星)的三营养食物链。我们对海带森林的三种不同的弹性指标(恢复可能性、恢复率和抗干扰性)进行了全球敏感性分析,以确定其生态驱动因素。我们发现,每个指标最依赖于一组独特的驱动因素:恢复可能性最依赖于活海带和漂流海带的产量,恢复率最依赖于海胆的生产和决定海胆在活海带上吃食的反馈,而抵抗力最依赖于决定捕食者消耗海胆的反馈。 因此,了解捕食者重新引入或恢复在海带系统中的潜在作用取决于衡量弹性的综合方法。
更新日期:2024-10-28
中文翻译:
多个弹性指标揭示了生态系统持久性的互补驱动因素:海带森林系统的应用
人为造成的全球变化会产生生物和非生物条件,从而增加恢复工作的不确定性和失败的风险。弹性管理的重点,即系统响应干扰的能力,有可能减少这种不确定性和风险。但是,确定驱动弹性的因素可能取决于如何衡量弹性。确定不同方面的弹性驱动因素如何为气候变化下的恢复提供信息的系统示例是加利福尼亚州北部海岸,由于强烈的海洋热浪和以海带为食的紫色海胆的主要捕食者的功能灭绝,海带的覆盖率下降了 95% 以上, 向日葵海星。尽管恢复工作的重点是清除海胆和重新引入该系统,但如何提高该系统对未来海洋热浪的适应能力的问题仍然存在。在本文中,我们介绍了一个动力学模型,该模型描述了海带、紫海胆和紫海胆捕食者(如向日葵海星)的三营养食物链。我们对海带森林的三种不同的弹性指标(恢复可能性、恢复率和抗干扰性)进行了全球敏感性分析,以确定其生态驱动因素。我们发现,每个指标最依赖于一组独特的驱动因素:恢复可能性最依赖于活海带和漂流海带的产量,恢复率最依赖于海胆的生产和决定海胆在活海带上吃食的反馈,而抵抗力最依赖于决定捕食者消耗海胆的反馈。 因此,了解捕食者重新引入或恢复在海带系统中的潜在作用取决于衡量弹性的综合方法。