当前位置:
X-MOL 学术
›
Ultrason. Sonochem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Acoustic black hole immersed sonoreactor for high-efficiency cavitation treatment
Ultrasonics Sonochemistry ( IF 8.7 ) Pub Date : 2024-10-18 , DOI: 10.1016/j.ultsonch.2024.107106 Cheng Chen, Yang Liu, Chenghui Wang, Jianzhong Guo, Shuyu Lin
Ultrasonics Sonochemistry ( IF 8.7 ) Pub Date : 2024-10-18 , DOI: 10.1016/j.ultsonch.2024.107106 Cheng Chen, Yang Liu, Chenghui Wang, Jianzhong Guo, Shuyu Lin
Developing innovative sonoreactors to enhance acoustic processing efficiency holds immense importance in the field of sonochemistry. Traditional immersed sonoreactors (TISs) mainly produce cavitation at the probe tip, with a relatively weak cavitation around the probe, resulting in posing challenges for high-efficiency cavitation treatment. Here we propose an acoustic black hole immersed sonoreactor (ABHIS) in longitudinal-flexural coupled vibration, enabling high-efficiency cavitation treatment by unleashing the cavitation potential of the probe. The symmetrical structure of the probe is altered to introduce a coupling of flexural vibration mode, and an acoustic black hole (ABH) profile is integrated to further enhance both flexural wave number and amplitude. In this paper, we present a systematic theoretical design method for ABHIS and compare its performance with TIS using finite element method (FEM). An ABHIS prototype is fabricated and subjected to experimental tests and cavitation observation. The results demonstrate that our theoretical analysis model accurately predicts the frequency characteristics of ABHIS. The proposed ABHIS exhibits satisfactory dynamic characteristics, with significantly increased vibration displacement and acoustic radiation ability compared to TIS. Importantly, the ABH design significantly expands ultrasonic cavitation regions and enhances acoustic radiation intensity of ABHIS, resulting in a substantial improvement in acoustic processing efficiency.
中文翻译:
用于高效空化处理的声学黑洞浸没式声波反应器
开发创新的声釜以提高声学处理效率在声化学领域具有极其重要的意义。传统的浸入式声振器 (TISs) 主要在探头尖端产生空化,探头周围的空化相对较弱,对高效空化处理提出了挑战。在这里,我们提出了一种纵向-弯曲耦合振动的声学黑洞浸没式声波反应器 (ABHIS),通过释放探头的空化电位来实现高效的空化处理。改变探头的对称结构以引入弯曲振动模式的耦合,并集成声学黑洞 (ABH) 轮廓以进一步增强弯曲波数和振幅。在本文中,我们提出了一种系统的 ABHIS 理论设计方法,并将其性能与使用有限元法 (FEM) 的 TIS 进行了比较。制造 ABHIS 原型并进行实验测试和空化观察。结果表明,我们的理论分析模型准确地预测了 ABHIS 的频率特性。所提出的 ABHIS 表现出令人满意的动态特性,与 TIS 相比,振动位移和声辐射能力显着增加。重要的是,ABH 设计显著扩大了超声空化区域并增强了 ABHIS 的声辐射强度,从而显著提高了声学处理效率。
更新日期:2024-10-18
中文翻译:
用于高效空化处理的声学黑洞浸没式声波反应器
开发创新的声釜以提高声学处理效率在声化学领域具有极其重要的意义。传统的浸入式声振器 (TISs) 主要在探头尖端产生空化,探头周围的空化相对较弱,对高效空化处理提出了挑战。在这里,我们提出了一种纵向-弯曲耦合振动的声学黑洞浸没式声波反应器 (ABHIS),通过释放探头的空化电位来实现高效的空化处理。改变探头的对称结构以引入弯曲振动模式的耦合,并集成声学黑洞 (ABH) 轮廓以进一步增强弯曲波数和振幅。在本文中,我们提出了一种系统的 ABHIS 理论设计方法,并将其性能与使用有限元法 (FEM) 的 TIS 进行了比较。制造 ABHIS 原型并进行实验测试和空化观察。结果表明,我们的理论分析模型准确地预测了 ABHIS 的频率特性。所提出的 ABHIS 表现出令人满意的动态特性,与 TIS 相比,振动位移和声辐射能力显着增加。重要的是,ABH 设计显著扩大了超声空化区域并增强了 ABHIS 的声辐射强度,从而显著提高了声学处理效率。