当前位置: X-MOL 学术npj Parkinsons Dis. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbial biomarker discovery in Parkinson’s disease through a network-based approach
npj Parkinson's Disease ( IF 6.7 ) Pub Date : 2024-10-26 , DOI: 10.1038/s41531-024-00802-2
Zhe Zhao, Jing Chen, Danhua Zhao, Baoyu Chen, Qi Wang, Yuan Li, Junyi Chen, Chaobo Bai, Xintong Guo, Nan Hu, Bingwei Zhang, Rongsheng Zhao, Junliang Yuan

Associations between the gut microbiota and Parkinson’s disease (PD) have been widely investigated. However, the replicable biomarkers for PD diagnosis across multiple populations remain elusive. Herein, we performed a meta-analysis to investigate the pivotal role of the gut microbiome in PD and its potential diagnostic implications. Six 16S rRNA gene amplicon sequence datasets from five independent studies were integrated, encompassing 550 PD and 456 healthy control samples. The analysis revealed significant alterations in microbial composition and alpha and beta diversity, emphasizing altered gut microbiota in PD. Specific microbial taxa, including Faecalibacterium, Roseburia, and Coprococcus_2, known as butyrate producers, were notably diminished in PD, potentially contributing to intestinal inflammation. Conversely, genera such as Akkermansia and Bilophila exhibited increased relative abundances. A network-based algorithm called NetMoss was utilized to identify potential biomarkers of PD. Afterwards, a classification model incorporating 11 optimized genera demonstrated high performance. Further functional analyses indicated enrichment in pathways related to neurodegeneration and metabolic pathways. These findings illuminate the intricate relationship between the gut microbiota and PD, offering insights into potential therapeutic interventions and personalized diagnostic strategies.



中文翻译:


通过基于网络的方法发现帕金森病中的微生物生物标志物



肠道微生物群与帕金森病 (PD) 之间的关联已被广泛研究。然而,用于多个人群 PD 诊断的可复制生物标志物仍然难以捉摸。在此,我们进行了一项荟萃分析,以研究肠道微生物组在 PD 中的关键作用及其潜在的诊断意义。整合了来自 5 项独立研究的 6 个 16S rRNA 基因扩增子序列数据集,包括 550 个 PD 和 456 个健康对照样本。分析揭示了微生物组成以及 α 和 β 多样性的显着变化,强调了 PD 中肠道微生物群的改变。特定的微生物类群,包括粪杆菌罗斯伯利亚Coprococcus_2,被称为丁酸盐生产者,在 PD 中显着减少,可能导致肠道炎症。相反,AkkermansiaBilophila 等属表现出相对丰度增加。使用一种名为 NetMoss 的基于网络的算法来识别 PD 的潜在生物标志物。之后,包含 11 个优化属的分类模型表现出高性能。进一步的功能分析表明,与神经退行性和代谢途径相关的通路富集。这些发现阐明了肠道微生物群与 PD 之间的复杂关系,为潜在的治疗干预和个性化诊断策略提供了见解。

更新日期:2024-10-26
down
wechat
bug