当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Insights from Techno-Economic Analysis Can Guide the Design of Low-Temperature CO2 Electrolyzers toward Industrial Scaleup
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-10-25 , DOI: 10.1021/acsenergylett.4c02647 Shashwati C. da Cunha, Joaquin Resasco
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-10-25 , DOI: 10.1021/acsenergylett.4c02647 Shashwati C. da Cunha, Joaquin Resasco
The field of CO2 reduction has identified several challenges that must be overcome to realize its immense potential to simultaneously close the carbon cycle, replace fossil-based chemical feedstocks, and store renewable electricity. However, frequently cited research targets were set without quantitatively analyzing their impact on economic viability. Through a physics-informed techno-economic assessment, we offer guidance on top priorities for CO2 reduction. Although separations dominate capital cost, increasing single-pass conversion is unnecessary because it leads to selectivity loss in current membrane electrode assemblies. Decoupling selectivity and single-pass conversion by moving away from a plug flow reactor design would reduce the base case levelized cost from $1.22/kgCO to $0.97/kgCO, as impactful as eliminating CO2R overpotential. Operating at high current densities (>500 mA/cm2) is undesirable unless cell voltages can be lowered. We confirm that levelized product cost is dominated by the cost of electricity to drive electrolysis. Although wholesale wind and solar electricity are cheaper than retail electricity, their capacity factors are too low for economical operation. Adding energy storage to increase the capacity factor of solar electricity triples the capital cost of the process. By updating research priorities based on fundamental electrolyzer behavior, we hope this work accelerates the practical application of CO2 reduction.
中文翻译:
来自技术经济分析的见解可以指导低温 CO2 电解槽的设计以实现工业放大
二氧化碳减排领域已经确定了必须克服的几个挑战,以实现其同时关闭碳循环、替代化石基化学原料和储存可再生电力的巨大潜力。然而,经常被引用的研究目标是在没有定量分析它们对经济可行性的影响的情况下设定的。通过基于物理学的技术经济评估,我们为减少 CO2 的首要任务提供指导。尽管分离在资本成本中占主导地位,但增加单通道转化率是不必要的,因为它会导致当前膜电极组件的选择性损失。通过摆脱活塞流反应器设计来实现脱耦选择性和单通道转换,可将基本情况的平准化成本从 1.22 美元/千克CO 降低到 0.97 美元/千克CO,其影响与消除 CO2R 过电位一样。除非可以降低电池电压,否则在高电流密度 (>500 mA/cm2) 下工作是不可取的。我们确认,平准化产品成本以驱动电解的电力成本为主。尽管批发风能和太阳能电力比零售电力便宜,但它们的容量系数太低,无法实现经济运行。增加储能以提高太阳能发电的容量系数会使该过程的资本成本增加三倍。通过根据电解槽的基本行为更新研究重点,我们希望这项工作能够加速 CO2 减排的实际应用。
更新日期:2024-10-25
中文翻译:
来自技术经济分析的见解可以指导低温 CO2 电解槽的设计以实现工业放大
二氧化碳减排领域已经确定了必须克服的几个挑战,以实现其同时关闭碳循环、替代化石基化学原料和储存可再生电力的巨大潜力。然而,经常被引用的研究目标是在没有定量分析它们对经济可行性的影响的情况下设定的。通过基于物理学的技术经济评估,我们为减少 CO2 的首要任务提供指导。尽管分离在资本成本中占主导地位,但增加单通道转化率是不必要的,因为它会导致当前膜电极组件的选择性损失。通过摆脱活塞流反应器设计来实现脱耦选择性和单通道转换,可将基本情况的平准化成本从 1.22 美元/千克CO 降低到 0.97 美元/千克CO,其影响与消除 CO2R 过电位一样。除非可以降低电池电压,否则在高电流密度 (>500 mA/cm2) 下工作是不可取的。我们确认,平准化产品成本以驱动电解的电力成本为主。尽管批发风能和太阳能电力比零售电力便宜,但它们的容量系数太低,无法实现经济运行。增加储能以提高太阳能发电的容量系数会使该过程的资本成本增加三倍。通过根据电解槽的基本行为更新研究重点,我们希望这项工作能够加速 CO2 减排的实际应用。