当前位置:
X-MOL 学术
›
J. Cosmol. Astropart. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Implications of in-ice volume scattering for radio-frequency neutrino experiments
Journal of Cosmology and Astroparticle Physics ( IF 5.3 ) Pub Date : 2024-10-25 , DOI: 10.1088/1475-7516/2024/10/086 A. Nozdrina, D. Besson
Journal of Cosmology and Astroparticle Physics ( IF 5.3 ) Pub Date : 2024-10-25 , DOI: 10.1088/1475-7516/2024/10/086 A. Nozdrina, D. Besson
Over the last three decades, several experimental initiatives have been launched with the goal of observing radio-frequency signals produced by ultra-high energy neutrinos (UHEN) interacting in solid media. Observed neutrino event signatures comprise impulsive signals with duration of order the inverse of the antenna+system bandwidth (∼10 ns), superimposed upon an incoherent (typically white noise) thermal noise spectrum. Whereas bulk volume scattering (VS) of radio-frequency (RF) signals is well-studied within the radio-glaciological communities, polar ice-based neutrino-detection experiments have thus far neglected VS in their signal projections. As discussed herein, coherent volume scattering (CVS, for which the phase of the incident signal is preserved during scattering) generated by in-ice neutrino interactions may similarly produce short-duration signal-like power, albeit with a slightly extended time structure, and thereby enhance neutrino detection rates, whereas incoherent (randomized phase) volume scattering (IVS) will persist for O(100 ns), appearing similar to thermal white noise and therefore reducing the measured Signal-to-Noise Ratio (SNR) of neutrino signals. Herein, we present the expected voltage profiles resulting from in-ice volume scattering as a function of the molecular scattering cross-section, for both CVS and IVS, and assess their impact on UHEN experiments. VS contributions are currently only weakly constrained by extant data; stronger limits may be obtained with dedicated calibration experiments.
中文翻译:
冰内体积散射对射频中微子实验的影响
在过去的三十年里,已经启动了几项实验计划,目的是观察固体介质中超高能中微子 (UHEN) 相互作用产生的射频信号。观测到的中微子事件特征包括脉冲信号,其有序持续时间为天线 + 系统带宽 (∼10 ns) 的倒数,叠加在不相干(通常为白噪声)热噪声频谱上。虽然射频 (RF) 信号的体体积散射 (VS) 在射电冰川学界得到了很好的研究,但迄今为止,基于极地冰的中微子探测实验在其信号预测中忽略了 VS。如本文所述,由冰中微子相互作用产生的相干体积散射(CVS,其入射信号的相位在散射期间保留)可能同样产生短持续时间的类似信号的功率,尽管时间结构略微延长,从而提高中微子检测率,而不相干(随机相位)体积散射 (IVS) 将持续 O(100 ns), 看起来类似于热白噪声,因此降低了测得的中微子信号信噪比 (SNR)。在本文中,我们提出了 CVS 和 IVS 的冰内体积散射作为分子散射截面函数的预期电压曲线,并评估了它们对 UHEN 实验的影响。VS 贡献目前仅受现有数据的弱限制;通过专门的校准实验可以获得更强的限值。
更新日期:2024-10-25
中文翻译:
冰内体积散射对射频中微子实验的影响
在过去的三十年里,已经启动了几项实验计划,目的是观察固体介质中超高能中微子 (UHEN) 相互作用产生的射频信号。观测到的中微子事件特征包括脉冲信号,其有序持续时间为天线 + 系统带宽 (∼10 ns) 的倒数,叠加在不相干(通常为白噪声)热噪声频谱上。虽然射频 (RF) 信号的体体积散射 (VS) 在射电冰川学界得到了很好的研究,但迄今为止,基于极地冰的中微子探测实验在其信号预测中忽略了 VS。如本文所述,由冰中微子相互作用产生的相干体积散射(CVS,其入射信号的相位在散射期间保留)可能同样产生短持续时间的类似信号的功率,尽管时间结构略微延长,从而提高中微子检测率,而不相干(随机相位)体积散射 (IVS) 将持续 O(100 ns), 看起来类似于热白噪声,因此降低了测得的中微子信号信噪比 (SNR)。在本文中,我们提出了 CVS 和 IVS 的冰内体积散射作为分子散射截面函数的预期电压曲线,并评估了它们对 UHEN 实验的影响。VS 贡献目前仅受现有数据的弱限制;通过专门的校准实验可以获得更强的限值。