当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
COL3a simultaneously regulates flowering and branching to improve grain yield in soybean
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2024-10-24 , DOI: 10.1111/pbi.14489
Chaosheng Gao, Jiazhi Yuan, Jianwei Lu, Wei Ye, Jianyi Zhi, Yongli Li, Weiwei Li, Mingming Sun, Fanjiang Kong, Baohui Liu, Qun Cheng, Lidong Dong

Soybean production in low-latitude regions is more than 50 per cent of the total worldwide production (United States Department of Agriculture, 2023). Therefore, it is very important to increase soybean yield in low-latitude regions. The branching number and flowering time are the major factors affecting soybean grain yield (Fang et al., 2024). Delaying flowering and maturity, and increasing the branch number can improve the final soybean yield by increasing the number of pods per plant (Dong et al., 2021; Sun et al., 2019). For example, the branch number was significantly increased and flowering time was delayed in the ap1 quadruple mutant and dt2 mutant, improving grain yield in soybean (Chen et al., 2020; Liang et al., 2022). Therefore, modulating the branch number and maturity are crucial for high-yield soybean breeding. However, only a few genes that regulating both branch number and flowering time have been identified.

In total, 26 CONSTANS (CO) homologues have been identified in soybean, but only the functions of COL1a, COL1b, COL2a and COL2b have been reported (Wu et al., 2014). In this study, two independent T5-generations of transgenic soybean lines that homozygous COL3a-overexpressing (COL3a-OE) were obtained (Figure 1a,b), and used to examine the agronomic traits under natural short-day (SD) and long-day (LD) field conditions in Guangzhou and Shijiazhuang, respectively. The results showed that COL3a-OE transgenic lines flowered and matured significantly later than the wild-type Williams 82 (W82) in the field of Guangzhou (Figure 1c–e) and Shijiazhuang (Figure 1f,g). In addition, COL3a-OE transgenic lines exhibited significantly increased branch numbers and improved overall grain yields compared to that of wild-type W82 (Figure 1d–g). We generated loss-of-function mutants of COL3a (named col3aCR) on a W82 background using the CRISPR/Cas9-mediated gene editing (Figure S1a–c) to further investigate the function of COL3a. DNA sequencing identified a col3aCR mutant carrying a 76-bp nucleotide deletion between targets 1 and 2, and a frameshift mutation was introduced (Figure S1a–c). There was no significant difference between the col3aCR mutant and wild-type W82 under SD or LD conditions in the growth chamber (Figure S1d–g). We speculated that the functionally redundant of duplicated homologous genes are one of the main reasons why the col3aCR mutant has no phenotype. These results showed that the overexpression of COL3a significantly enhanced grain yield by increasing branch number and delaying maturity in soybean.

Details are in the caption following the image
Figure 1
Open in figure viewerPowerPoint
Overexpression of COL3a stably enhances yield in soybean. (a, b) Two independent COL3a-overexpressing transgenic soybean lines by RT-qPCR (a) and western blot with anti-HA (b). (c, d) Phenotypes of COL3a-overexpressing transgenic soybean plants (COL3a-OE) and Williams 82 (W82) under natural short-day (SD) field conditions in Guangzhou, Scale bars, 10 cm. (e) Flowering time, Maturity, Number of branches, Grain weight per plant of COL3a-OE and W82 under natural SD conditions in Guangzhou. (f) Phenotypes of COL3a-OE and W82 under natural short-day (LD) field conditions in Shijiazhuang, Scale bars, 20 cm. (g) Flowering time, Maturity, Number of branches, Grain weight per plant of COL3a-OE and W82 under natural LD conditions in Shijiazhuang. (h) Diurnal variation in transcript levels of E1 in COL3a-OE and W82 plants under SD conditions (12 h light/12 h dark) in growth chamber. All data are given as mean ± SD (n = 3 repeats). (i) Transient assay using Arabidopsis protoplasts to test luciferase activity under the control of the E1 promoter, with the results from three independent replicates shown; the value for each replicate is represented by a dot. A Student's t-test was used to generate the P value. (j) ChIP-qPCR results demonstrating the direct binding of COL3a protein to the E1 promoter. EF1b as negative control. A Student's t-test was used to generate the P values, **P < 0.01. (k) Flowering time of soybean plants possessing different allelic combinations at COL3a and E1 under SD conditions. e1as is a weak mutant allele of E1, e1CR is a null allele of E1. Scale bars, 10 cm. (l) The transcription levels of SPL family genes in COL3a-OE and W82 soybean plants under natural SD conditions (12 h light/12 h dark) in growth chamber. Significant differences were analysed based on the results of three biological replications (Student's t-test: **P < 0.01). (m) Haplotypes of COL3a and proportions of COL3a alleles and their co-occurrence with each of the three-germplasm groups. (n) Comparison of the amino acid sequences of COL3a and its homologues in legumes. The red asterisk represent sites of variation. (o) Flowering time variations in 617 soybean accessions carrying COL3aH1 or COL3aH2 in Guangzhou 2018 and 2019. (p) π values analysis in wild soybeans, landraces and improved cultivars across the 120 Kb genomic regions surrounding COL3a gene. Grey background area indicate COL3a gene.

The expression pattern of COL3a was firstly investigated in different soybean organs to understand the molecular mechanism of how COL3a regulate flowering and branching in soybeans. The results showed that COL3a was constitutively expressed in flowers, leaves, stems, roots and shoot apexes, but it was highly expressed in the leaves (Figure S2a). The subcellular localization of the COL3a protein was also determined in Arabidopsis protoplasts. We found that the COL3a-GFP fusion protein was located in the nucleus, whereas the GFP control was located primarily in the nucleus and cytoplasm (Figure S2b).

Previous studies have shown that the legume-specific E1 gene plays a central role in photoperiod-regulated flowering and maturity (Xia et al., 2012) by regulating the expression of FT2a and FT5a genes in soybean. We first investigated E1 expression in COL3a-OE and W82 soybean plants to test whether COL3a can regulate the expression of E1. The transcription level of E1 was higher in the COL3a-OE than in W82 plants (Figure 1h), and FT2a and FT5a expression levels were lower in COL3a-OE plants than in W82 plants (Figure S3a,b). Transient expression assays also showed that COL3a induced the expression of the pE1::LUC reporter gene (Figure 1i). Chromatin immunoprecipitation (ChIP)-qPCR revealed that COL3a was directly associated with the E1 promoter regions containing a core-like-motif (CCACA, Figure 1j). We crossed COL3a-OE2 with e1CR mutant in W82 background to develop COL3a-OE2/e1CR lines and subjected them to phenotypic evaluation to further explore the genetic interaction of COL3a and E1. The COL3a-OE2 plants showed delayed flowering in both the e1as and e1CR genetic backgrounds; however, the effect was weaker in the e1CR background, implying that the full effect of COL3a on flowering mainly depends on E1 (Figure 1k). These results combined indicated that COL3a directly binds to the promoter of E1 and activates its expression. Notably, this is the first gene to be identified that directly activates E1 expression in soybeans.

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors play a critical role in regulating the number of soybean branches (Bao et al., 2019; Sun et al., 2019). We performed RT-qPCR assay on COL3a-OE2 and W82 soybean plants to test whether COL3a can regulate expression SPL genes to control branch number in soybean shoot apex. The results showed that a large number of SPL genes were down-regulated in COL3a-OE2 transgenic soybean plants compared to wild-type W82 (Figure 1l), including SPL9a and SPL9b, which have been confirmed to increase branching in soybeans (Bao et al., 2019).

The natural variation of the COL3a coding sequence was analysed in 617 previously resequenced soybean accessions, including 177 wild, 28 landrace and 412 cultivar soybeans (Dong et al., 2022; Kou et al., 2022) to explore the evolutionary origin of the different alleles in COL3a. Two unique, high-confidence haplotypes were identified in COL3a gene. The 6-bp deletion in haplotype 2 (COL3aH2) was identical to that of all other COL3 homologues in legumes, suggesting that COL3aH2 is the original haplotype in soybean (Figure 1m,n). A dual-luciferase transient expression assay showed that COL3aH2 has a stronger ability to activate the expression of E1 than COL3aH1 (Figure S4). Varieties carrying COL3aH2 showed delayed flowering compared to that of COL3aH1 (Figure 1o,p). Next, we examined the percentages of the different alleles in the improved cultivars, landraces and wild soybeans in our panel of 617 resequenced accessions. The COL3aH1 allele was present in 43.7% of the wild soybeans, whereas COL3aH2 was present in 56.3%, indicating that the COL3aH2 allele is a major genetic variant in wild soybeans (Figure 1m). The frequency of COL3aH1 increased to 96.4% and 99.8% in the landraces and cultivars, respectively, suggesting that COL3aH1 have been underwent strong artificial selection during post-domestication (Figure 1m). We further identified strong evidence of selection in a region of 108 kb that contains COL3a gene and 17 other genes (Figure 1p and Table S1). These results suggested that the COL3aH1 allele is targeted by selection, thereby causing its rapid accumulation in domesticated soybeans.

In conclusion, we identified that the COL3a gene play a key role in regulating maturity and branch number to control grain yield in soybean and that the earlier flowering alleles of COL3aHI have undergone artificial selection in modern cultivar soybean in high-latitude regions. Our findings also provide a biotechnological strategy for introducing COL3aH2 allele into modern soybean to create high-yielding soybean in low latitude by delaying flowering and increasing branch number.



中文翻译:


COL3a 同时调节大豆的开花和分枝,以提高大豆的产量



低纬度地区的大豆产量占全球总产量的 50% 以上(美国农业部,2023 年)。因此,提高低纬度地区的大豆产量非常重要。分枝数和开花时间是影响大豆籽粒产量的主要因素 (Fang et al., 2024)。延迟开花和成熟,增加分枝数可以通过增加每株植物的豆荚数量来提高大豆的最终产量(Dong et al., 2021;Sun等 人2019 年)。例如,ap1 四重突变体和 dt2 突变体的分支数显著增加,开花时间延迟,从而提高了大豆的产量(Chen等 人2020 年;Liang et al., 2022)。因此,调节分枝数和成熟度对于高产大豆育种至关重要。然而,目前仅鉴定出少数几个同时调节分枝数和开花时间的基因。


在大豆中总共鉴定出 26 个 CONSTANS (CO) 同源物,但仅报道了 COL1aCOL1bCOL2aCOL2b 的功能(Wu等 人2014 年)。在本研究中,获得了两个独立的 T5 代纯合 COL3a 过表达 (COL3a-OE) 的转基因大豆品系 (图 1a、b),并分别用于检查广州和石家庄自然短日照 (SD) 和长日照 (LD) 条件下的农艺性状。结果表明,在广州(图 1c-e)和石家庄(图 1f,g)领域,COL3a-OE 转基因品系的开花和成熟时间显著晚于野生型 Williams 82 (W82)。此外,与野生型 W82 相比,COL3a-OE 转基因系表现出分支数显著增加,总籽粒产量提高(图 1d-g)。我们使用 CRISPR/Cas9 介导的基因编辑在 W82 背景上生成了 COL3a 的功能丧失突变体(命名为 col3aCR)(图 S1a-c),以进一步研究 COL3a 的功能。DNA 测序鉴定出一个 col3aCR 突变体,在靶标 1 和 2 之间携带 76 bp 核苷酸缺失,并引入了移码突变(图 S1a-c)。在生长室的 SD 或 LD 条件下,col3aCR 突变体和野生型 W82 之间没有显着差异(图 S1d-g)。我们推测,重复同源基因的功能冗余是 col3aCR 突变体没有表型的主要原因之一。 这些结果表明,COL3a 的过表达通过增加大豆的分枝数和延迟成熟来显著提高籽粒产量。

Details are in the caption following the image
 图 1

在图窗查看器PowerPoint 中打开

COL3a 的过表达稳定地提高了大豆的产量。(一、二)通过 RT-qPCR (a) 和抗 HA 的 western blot (b) 获得两个独立的 COL3a 过表达转基因大豆品系。(c, d)广州自然短日照 (SD) 条件下 COL3a 过表达转基因大豆植株 (COL3a-OE) 和 Williams 82 (W82) 的表型,比例尺,10 cm。(e) 广州自然 SD 条件下 COL3a-OE 和 W82 的开花时间、成熟度、分枝数、单株粒重。(f) 石家庄自然短日照条件下 COL3a-OE 和 W82 的表型,比例尺,20 cm。(g) 石家庄自然短日照条件下 COL3a-OE 和 W82 的开花时间、成熟度、枝数、单株粒重。(h) 在生长室中 SD 条件 (12 h 光照/12 h 黑暗) 下 COL3a-OE 和 W82 植物中 E1 转录水平的日变化。所有数据均以 SD ±平均值给出(n = 3 次重复)。(i) 使用 Arabidopsis 原生质体进行瞬时测定,以在 E1 启动子的控制下测试荧光素酶活性,显示了三个独立重复的结果;每个 replicate 的值由一个点表示。使用 Student 的 t 检验生成 P 值。(j) ChIP-qPCR 结果显示 COL3a 蛋白与 E1 启动子直接结合。EF1b 作为阴性对照。使用学生 t 检验生成 P 值 **P < 0.01。(k) SD 条件下在 COL3aE1 处具有不同等位基因组合的大豆植株的开花时间。 e1 E1 的弱突变等位基因,e1CRE1 的无效等位基因。比例尺,10 cm。(l) 在生长室中自然 SD 条件 (12 h light/12 h dark) 下 COL3a-OE 和 W82 大豆植株中 SPL 家族基因的转录水平。根据 3 次生物复制的结果分析显著差异 (学生 t 检验: **P < 0.01)。(m) COL3a 的单倍型和 COL3a 等位基因的比例以及它们与三个种质组中每个种质组的共现。(n) 豆科植物中 COL3a 及其同源物的氨基酸序列比较。红色星号表示变异位点。(o) 2018 年和 2019 年广州 617 份携带 COL3aH1COL3aH2 的大豆种质的开花时间变化。(p) 在 COL3a 基因周围 120 Kb 基因组区域中野生大豆、地方品种和改良品种的 π 值分析。灰色背景区域表示 COL3a 基因。


首先研究 COL3a 在大豆不同器官中的表达模式,以了解 COL3a 如何调节大豆开花和分枝的分子机制。结果表明,COL3a 在花、叶、茎、根和芽尖中组成型表达,但在叶中高度表达(图 S2a)。在拟南芥原生质体中也确定了 COL3a 蛋白的亚细胞定位。我们发现 COL3a-GFP 融合蛋白位于细胞核中,而 GFP 对照主要位于细胞核和细胞质中(图 S2b)。


以前的研究表明,豆科植物特异性 E1 基因通过调节大豆中 FT2a 和 FT5a 基因的表达,在光周期调节的开花和成熟中起核心作用 (Xia et al., 2012)。我们首先研究了 E1COL3a-OE 和 W82 大豆植株中的表达,以测试 COL3a 是否可以调节 E1 的表达。E1 在 COL3a-OE 中的转录水平高于 W82 植物(图 1h),FT2aFT5aCOL3a-OE 植物中的表达水平低于 W82 植物(图 S3a、b)。瞬时表达测定还显示 COL3a 诱导 pE1::LUC 报告基因的表达(图 1i)。染色质免疫沉淀 (ChIP)-qPCR 显示 COL3a 与包含核心样基序的 E1 启动子区域直接相关 (CCACA,图 1j)。我们将 W82 背景下的 COL3a-OE2e1CR 突变体杂交,开发 COL3a-OE2/e1CR 系,并对其进行表型评价,以进一步探索 COL3aE1 的遗传相互作用。COL3a-OE2 植株在 e1ase1CR 遗传背景中均表现出延迟开花;然而,在 e1CR 背景下效果较弱,这意味着 COL3a 对开花的全部影响主要取决于 E1(图 1k)。 这些结果综合表明,COL3a 直接与 E1 的启动子结合并激活其表达。值得注意的是,这是第一个被鉴定的直接激活大豆中 E1 表达的基因。


鳞状启动子结合蛋白样 (SPL) 转录因子在调节大豆分枝数量中起关键作用(Bao等人 2019 年;Sun等 人2019 年)。我们对 COL3a-OE2 和 W82 大豆植株进行了 RT-qPCR 检测,以检测 COL3a 是否能调节 SPL 基因的表达以控制大豆芽顶端的分支数。结果表明,与野生型 W82 相比,COL3a-OE2 转基因大豆植株中大量 SPL 基因下调(图 1l),包括 SPL9aSPL9b,已被证实会增加大豆的分枝(Bao et al., 2019)。


在 617 个先前重测序的大豆种质中分析了 COL3a 编码序列的自然变异,包括 177 个野生大豆、28 个地方品种和 412 个栽培品种大豆(Dong等人 2022 年;Kou et al., 2022)探索 COL3a 中不同等位基因的进化起源。在 COL3a 基因中鉴定出两种独特的、高置信度的单倍型。单倍型 2 (COL3aH2) 中的 6 bp 缺失与豆科植物中所有其他 COL3 同源物的缺失相同,表明 COL3aH2 是大豆中的原始单倍型(图 1m,n)。双荧光素酶瞬时表达测定显示,COL3aH2 激活 E1 表达的能力比 COL3aH1 强(图 S4)。与 COL3aH1 相比,携带 COL3aH2 的品种表现出延迟开花(图 1o,p)。接下来,我们在 617 个重测序种质的面板中检查了改良品种、地方品种和野生大豆中不同等位基因的百分比。COL3aH1 等位基因存在于 43.7% 的野生大豆中,而 COL3aH2 存在于 56.3% 的野生大豆中,表明 COL3aH2 等位基因是野生大豆中的主要遗传变异(图 1m)。COL3aH1 的频率增加到 96.4% 和 99。在地方品种和栽培品种中分别为 8%,表明 COL3aH1 在驯化后经历了强烈的人工选择(图 1m)。我们进一步确定了在包含 COL3a 基因和 17 个其他基因的 108 kb 区域中选择的有力证据(图 1p 和表 S1)。这些结果表明,COL3aH1 等位基因是通过选择靶向的,从而导致其在驯化大豆中快速积累。


综上所述,我们发现 COL3a 基因在调控大豆成熟度和分枝数以控制籽粒产量方面起关键作用,并且 COL3aHI 的早期开花等位基因在高纬度地区现代品种大豆中经历了人工选择。我们的研究结果还为将 COL3aH2 等位基因引入现代大豆提供了一种生物技术策略,通过延迟开花和增加分枝数在低纬度地区创造高产大豆。

更新日期:2024-10-24
down
wechat
bug