当前位置:
X-MOL 学术
›
Glob. Change Biol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation
Global Change Biology ( IF 10.8 ) Pub Date : 2024-10-25 , DOI: 10.1111/gcb.17546 Stefan Klesse, Richard L. Peters, Raquel Alfaro‐Sánchez, Vincent Badeau, Claudia Baittinger, Giovanna Battipaglia, Didier Bert, Franco Biondi, Michal Bosela, Marius Budeanu, Vojtěch Čada, J. Julio Camarero, Liam Cavin, Hugues Claessens, Ana‐Maria Cretan, Katarina Čufar, Martin de Luis, Isabel Dorado‐Liñán, Choimaa Dulamsuren, Josep Maria Espelta, Balazs Garamszegi, Michael Grabner, Jozica Gricar, Andrew Hacket‐Pain, Jon Kehlet Hansen, Claudia Hartl, Andrea Hevia, Martina Hobi, Pavel Janda, Alistair S. Jump, Jakub Kašpar, Marko Kazimirović, Srdjan Keren, Juergen Kreyling, Alexander Land, Nicolas Latte, François Lebourgeois, Christoph Leuschner, Mathieu Lévesque, Luis A. Longares, Edurne Martinez del Castillo, Annette Menzel, Maks Merela, Martin Mikoláš, Renzo Motta, Lena Muffler, Anna Neycken, Paola Nola, Momchil Panayotov, Any Mary Petritan, Ion Catalin Petritan, Ionel Popa, Peter Prislan, Tom Levanič, Catalin‐Constantin Roibu, Álvaro Rubio‐Cuadrado, Raúl Sánchez‐Salguero, Pavel Šamonil, Branko Stajić, Miroslav Svoboda, Roberto Tognetti, Elvin Toromani, Volodymyr Trotsiuk, Ernst van der Maaten, Marieke van der Maaten‐Theunissen, Astrid Vannoppen, Ivana Vašíčková, Georg von Arx, Martin Wilmking, Robert Weigel, Tzvetan Zlatanov, Christian Zang, Allan Buras
Global Change Biology ( IF 10.8 ) Pub Date : 2024-10-25 , DOI: 10.1111/gcb.17546 Stefan Klesse, Richard L. Peters, Raquel Alfaro‐Sánchez, Vincent Badeau, Claudia Baittinger, Giovanna Battipaglia, Didier Bert, Franco Biondi, Michal Bosela, Marius Budeanu, Vojtěch Čada, J. Julio Camarero, Liam Cavin, Hugues Claessens, Ana‐Maria Cretan, Katarina Čufar, Martin de Luis, Isabel Dorado‐Liñán, Choimaa Dulamsuren, Josep Maria Espelta, Balazs Garamszegi, Michael Grabner, Jozica Gricar, Andrew Hacket‐Pain, Jon Kehlet Hansen, Claudia Hartl, Andrea Hevia, Martina Hobi, Pavel Janda, Alistair S. Jump, Jakub Kašpar, Marko Kazimirović, Srdjan Keren, Juergen Kreyling, Alexander Land, Nicolas Latte, François Lebourgeois, Christoph Leuschner, Mathieu Lévesque, Luis A. Longares, Edurne Martinez del Castillo, Annette Menzel, Maks Merela, Martin Mikoláš, Renzo Motta, Lena Muffler, Anna Neycken, Paola Nola, Momchil Panayotov, Any Mary Petritan, Ion Catalin Petritan, Ionel Popa, Peter Prislan, Tom Levanič, Catalin‐Constantin Roibu, Álvaro Rubio‐Cuadrado, Raúl Sánchez‐Salguero, Pavel Šamonil, Branko Stajić, Miroslav Svoboda, Roberto Tognetti, Elvin Toromani, Volodymyr Trotsiuk, Ernst van der Maaten, Marieke van der Maaten‐Theunissen, Astrid Vannoppen, Ivana Vašíčková, Georg von Arx, Martin Wilmking, Robert Weigel, Tzvetan Zlatanov, Christian Zang, Allan Buras
With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree‐ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species‐dependent and less well‐known for more temperate tree species. Using a unique pan‐European tree‐ring network of 26,430 European beech (Fagus sylvatica L. ) trees from 2118 sites, we applied a linear mixed‐effects modeling framework to (i) explain variation in climate‐dependent growth and (ii) project growth for the near future (2021–2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952–2011), the model yielded high regional explanatory power (R 2 = 0.38–0.72). Considering a moderate climate change scenario (CMIP6 SSP2‐4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%–18% (interquartile range) in northwestern Central Europe and by 11%–21% in the Mediterranean region. In contrast, climate‐driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%–24% growth increase in the high‐elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (−10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water‐limited, a northward shift in its distributional range will be constrained by water availability.
中文翻译:
由于持续的用水限制,预计欧洲山毛榉北部边缘的未来生长不会加快
随着全球变暖的持续,水资源短缺的增加加剧了森林生态系统的生理压力,对树木的生长、活力和生存产生了负面影响。因此,单个树种将如何应对增加的干旱胁迫是碳核算和制定气候变化缓解策略需要解决的关键研究问题。最近的树木年轮研究表明,高纬度地区的树木将受益于温暖的温度,但这可能高度依赖于物种,而对于更温和的树种来说,则不太为人所知。使用来自 2118 个地点的 26,430 棵欧洲山毛榉 (Fagus sylvatica L.) 树的独特泛欧树木年轮网络,我们应用线性混合效应建模框架来 (i) 解释气候依赖性生长的变化,以及 (ii) 预测不久的将来(2021-2050 年)整个山毛榉分布的增长。我们模拟了径向生长对每年变化气候的反应的空间模式,作为平均气候条件(年平均温度、年平均气候水平衡和大陆性)的函数。在校准期间 (1952-2011),该模型产生了很高的区域解释能力 (R2 = 0.38-0.72)。考虑到温和的气候变化情景 (CMIP6 SSP2-4.5),预计未来山毛榉大部分分布范围的生长量将下降。特别是,中欧西北部的预计增长率下降了 12%-18%(四分位数范围),地中海地区下降了 11%-21%。相比之下,气候驱动的增长增长仅限于当前发生的 13% 左右,当时历史平均年温度低于 ~6°C。 更具体地说,该模型预测阿尔卑斯山和喀尔巴阡弧的高海拔集群将增长 3%-24%。 值得注意的是,我们发现斯堪的纳维亚半岛南部极地前沿未来增长的潜力很小(-10% 到 +2%)。因为在这个地区,山毛榉的生长主要是受水限制的,所以其分布范围的北移将受到水资源供应的限制。
更新日期:2024-10-25
中文翻译:
由于持续的用水限制,预计欧洲山毛榉北部边缘的未来生长不会加快
随着全球变暖的持续,水资源短缺的增加加剧了森林生态系统的生理压力,对树木的生长、活力和生存产生了负面影响。因此,单个树种将如何应对增加的干旱胁迫是碳核算和制定气候变化缓解策略需要解决的关键研究问题。最近的树木年轮研究表明,高纬度地区的树木将受益于温暖的温度,但这可能高度依赖于物种,而对于更温和的树种来说,则不太为人所知。使用来自 2118 个地点的 26,430 棵欧洲山毛榉 (Fagus sylvatica L.) 树的独特泛欧树木年轮网络,我们应用线性混合效应建模框架来 (i) 解释气候依赖性生长的变化,以及 (ii) 预测不久的将来(2021-2050 年)整个山毛榉分布的增长。我们模拟了径向生长对每年变化气候的反应的空间模式,作为平均气候条件(年平均温度、年平均气候水平衡和大陆性)的函数。在校准期间 (1952-2011),该模型产生了很高的区域解释能力 (R2 = 0.38-0.72)。考虑到温和的气候变化情景 (CMIP6 SSP2-4.5),预计未来山毛榉大部分分布范围的生长量将下降。特别是,中欧西北部的预计增长率下降了 12%-18%(四分位数范围),地中海地区下降了 11%-21%。相比之下,气候驱动的增长增长仅限于当前发生的 13% 左右,当时历史平均年温度低于 ~6°C。 更具体地说,该模型预测阿尔卑斯山和喀尔巴阡弧的高海拔集群将增长 3%-24%。 值得注意的是,我们发现斯堪的纳维亚半岛南部极地前沿未来增长的潜力很小(-10% 到 +2%)。因为在这个地区,山毛榉的生长主要是受水限制的,所以其分布范围的北移将受到水资源供应的限制。