当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modulating interfacial Zn2+ deposition mode towards stable Zn anode via bimetallic co-doped coating
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-10-25 , DOI: 10.1016/j.ensm.2024.103834 Xuefang Xie, Longfei Deng, Lanyan Li, Anqiang Pan, Shuquan Liang, Guozhao Fang
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-10-25 , DOI: 10.1016/j.ensm.2024.103834 Xuefang Xie, Longfei Deng, Lanyan Li, Anqiang Pan, Shuquan Liang, Guozhao Fang
Artificial coatings represent the promising means to address the interfacial issues of Zn anode, but it poses a significant challenge to their stability due to the fatigue and resulting cracking of coatings during repeated cycling. Here, a functional coating with the synergistic effect of bimetallic co-doping was developed, which changes the Zn2+ deposition mode to interlayer deposition in coating. The simultaneous doping of Cu2+ and In3+ reduces the pyrrolic N content and enhances the adsorption of Zn2+ in the active sites. Bimetallic co-doping results in an increase in specific surface area and a decrease in pore size, thus providing more active sites. As well as enhanced electrical conductivity, electrons can enter between the coatings, thus promoting redox reactions between the layers. Therefore, it endows surface coating with low polarization and stress buffering simultaneously, which avoids cracking and stripping of coatings during cycling. As a result, the cycle life of CuInZIF-8@Zn||CuInZIF-8@Zn symmetric cell exhibits more than 1200 h at 5 mA cm−2 and 5 mAh cm−2 . The CuInZIF-8@Zn anode can match multiple types of cathodes and achieve excellent cycling stability; For instance, it can cycle stably for 3000 cycles when paired with vanadium-based cathode. This work provides a new perspective of artificial coatings towards highly stable Zn anode.
中文翻译:
通过双金属共掺杂涂层将界面 Zn2+ 沉积模式调制为稳定的 Zn 负极
人工涂层是解决 Zn 负极界面问题的有前途的方法,但由于涂层在反复循环过程中的疲劳和开裂,它对其稳定性构成了重大挑战。在这里,开发了一种具有双金属共掺杂协同作用的功能涂层,它将 Zn2+ 沉积模式转变为涂层中的层间沉积。Cu2+ 和 In3+ 的同时掺杂降低了吡咯氮含量,增强了 Zn2+ 在活性位点的吸附。双金属共掺杂导致比表面积增加和孔径减小,从而提供更多活性位点。除了增强的导电性外,电子还可以进入涂层之间,从而促进层之间的氧化还原反应。因此,它同时赋予表面涂层低极化和应力缓冲,避免了循环过程中涂层的开裂和剥离。因此,CuInZIF-8@Zn||CuInZIF-8@Zn 对称电池在 5 mA cm-2 和 5 mAh cm-2 下表现出超过 1200 小时。CuInZIF-8@Zn 负极可匹配多种类型的阴极,实现优异的循环稳定性;例如,当与钒基阴极配对时,它可以稳定循环 3000 次。这项工作为人工涂层向高度稳定的 Zn 负极提供了新的视角。
更新日期:2024-10-25
中文翻译:
通过双金属共掺杂涂层将界面 Zn2+ 沉积模式调制为稳定的 Zn 负极
人工涂层是解决 Zn 负极界面问题的有前途的方法,但由于涂层在反复循环过程中的疲劳和开裂,它对其稳定性构成了重大挑战。在这里,开发了一种具有双金属共掺杂协同作用的功能涂层,它将 Zn2+ 沉积模式转变为涂层中的层间沉积。Cu2+ 和 In3+ 的同时掺杂降低了吡咯氮含量,增强了 Zn2+ 在活性位点的吸附。双金属共掺杂导致比表面积增加和孔径减小,从而提供更多活性位点。除了增强的导电性外,电子还可以进入涂层之间,从而促进层之间的氧化还原反应。因此,它同时赋予表面涂层低极化和应力缓冲,避免了循环过程中涂层的开裂和剥离。因此,CuInZIF-8@Zn||CuInZIF-8@Zn 对称电池在 5 mA cm-2 和 5 mAh cm-2 下表现出超过 1200 小时。CuInZIF-8@Zn 负极可匹配多种类型的阴极,实现优异的循环稳定性;例如,当与钒基阴极配对时,它可以稳定循环 3000 次。这项工作为人工涂层向高度稳定的 Zn 负极提供了新的视角。