当前位置:
X-MOL 学术
›
J. Mater. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Atomically dispersed Ru on flower-like In2O3 to boost CO2 hydrogenation to methanol
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-10-24 , DOI: 10.1016/j.jmst.2024.10.004 Mengyao Xu, Fei Liu, Shike Liu, Jun Ma, Mengqin Yao, Xiaodan Wang, Jianxin Cao
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-10-24 , DOI: 10.1016/j.jmst.2024.10.004 Mengyao Xu, Fei Liu, Shike Liu, Jun Ma, Mengqin Yao, Xiaodan Wang, Jianxin Cao
Metal-based catalysts are prevalent in the CO2 hydrogenation to methanol owing to their remarkable catalytic activity. Herein, Ru/In2O3 catalysts with different morphologies obtained by doping Ru into In2O3 with irregular, rod-like, and flower-like morphologies are used for catalytic CO2 hydrogenation to methanol. Results indicate that the flower-like Ru/In2O3 (Ru/In2O3-F) exhibits higher catalytic performance than Ru/In2O3 with other morphologies, achieving a 12.9% CO2 conversion, 74.02% methanol selectivity, and 671.36 mgMeOH·h−1·gcat−1 methanol spatiotemporal yield. Furthermore, Ru/In2O3-F maintains its catalytic stability over 200 h at 5 MPa and 290 °C. The promotional effect mainly stems from the fact that electronic structure of Ru can be effectively adjusted by modulating the morphology of In2O3. The strong interaction between atomically dispersed Ru and In2O3-F enhances the structural stability of Ru, inhibiting the agglomeration of the catalyst during the reaction process. Furthermore, density-functional theory calculations reveal that highly dispersed Ru atoms not only perform efficient and rapid electronic gain and loss processes, facilitating the catalytic activation of H2 into H intermediates. It also enables the generated reactive H to rapidly overflow to the surrounding In sites to participate in CO2 reduction. These findings provide a theoretical basis for the development of high-performance catalysts for CO2 hydrogenation.
中文翻译:
原子分散在花状 In2O3 上的 Ru 以促进 CO2 加氢生成甲醇
金属基催化剂因其卓越的催化活性而在 CO2 加氢制甲醇中普遍存在。本文采用不规则、棒状和花状形态的 Ru/In 2 O 3 掺杂到不同形态的 In2O3 中,获得具有不同形貌的 Ru/In2O3 催化剂,用于催化 CO2 加氢制甲醇。结果表明,花状 Ru/In2O3 (Ru/In2O3-F) 表现出比其他形态的 Ru/In2O3 更高的催化性能,实现了 12.9% 的 CO2 转化率、74.02% 的甲醇选择性和 671.36 mgMeOH·h-1·g cat-1 甲醇的时空产率。此外,Ru/In2O3-F 在 5 MPa 和 290 °C 下保持其催化稳定性超过 200 小时。 这种促进作用主要源于Ru的电子结构可以通过调节In2O3的形态来有效调节。原子分散的 Ru 和 In2O3-F 之间的强相互作用增强了 Ru 的结构稳定性,抑制了反应过程中催化剂的团聚。此外,密度泛函理论计算表明,高度分散的 Ru 原子不仅执行高效和快速的电子增益和损耗过程,还促进了 H2 催化活化为 H 中间体。它还使生成的反应性 H 能够迅速溢出到周围的 In 位点,参与 CO2 还原。这些发现为开发高性能 CO2 加氢催化剂提供了理论依据。
更新日期:2024-10-25
中文翻译:
原子分散在花状 In2O3 上的 Ru 以促进 CO2 加氢生成甲醇
金属基催化剂因其卓越的催化活性而在 CO2 加氢制甲醇中普遍存在。本文采用不规则、棒状和花状形态的 Ru/In 2 O 3 掺杂到不同形态的 In2O3 中,获得具有不同形貌的 Ru/In2O3 催化剂,用于催化 CO2 加氢制甲醇。结果表明,花状 Ru/In2O3 (Ru/In2O3-F) 表现出比其他形态的 Ru/In2O3 更高的催化性能,实现了 12.9% 的 CO2 转化率、74.02% 的甲醇选择性和 671.36 mgMeOH·h-1·g cat-1 甲醇的时空产率。此外,Ru/In2O3-F 在 5 MPa 和 290 °C 下保持其催化稳定性超过 200 小时。 这种促进作用主要源于Ru的电子结构可以通过调节In2O3的形态来有效调节。原子分散的 Ru 和 In2O3-F 之间的强相互作用增强了 Ru 的结构稳定性,抑制了反应过程中催化剂的团聚。此外,密度泛函理论计算表明,高度分散的 Ru 原子不仅执行高效和快速的电子增益和损耗过程,还促进了 H2 催化活化为 H 中间体。它还使生成的反应性 H 能够迅速溢出到周围的 In 位点,参与 CO2 还原。这些发现为开发高性能 CO2 加氢催化剂提供了理论依据。