当前位置:
X-MOL 学术
›
J. Mater. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Silver nanoparticles bridging liquid metal for wearable electromagnetic interference fabric
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-10-24 , DOI: 10.1016/j.jmst.2024.10.006 Gui Yang, Xiaoyuan Zhang, Jingzhan Zhu, Zichao Li, Duo Pan, Fengmei Su, Youxin Ji, Chuntai Liu, Changyu Shen
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-10-24 , DOI: 10.1016/j.jmst.2024.10.006 Gui Yang, Xiaoyuan Zhang, Jingzhan Zhu, Zichao Li, Duo Pan, Fengmei Su, Youxin Ji, Chuntai Liu, Changyu Shen
Stretchable conductive fibers are essential for the advancement of wearable electronic textiles. However, a significant challenge arises as their conductivity sharply decreases when stretched due to disruptions in electronic transport. Coating fibers with soft liquid metal (LM) has emerged as a promising solution. Despite this, there remains an urgent need to develop methods that enhance LM adhesion to substrates while facilitating efficient electron transport pathways. This study demonstrates a novel Ag-LM conductive network strategy for fabricating a thermoplastic polyurethane/polydopamine/silver-LM (TPU/PDA/Ag-LM) fiber membrane. This membrane exhibits outstanding stretchable electromagnetic interference (EMI) shielding performance and is produced through straightforward electrospinning, electroless depositing, and LM coating and activation. The TPU/PDA/Ag fiber membrane is initially prepared via polydopamine-assisted deposition of silver nanoparticles (AgNPs) on electrospun TPU fibers. The presence of AgNPs on the surface of TPU/PDA fibers enhances LM adhesion to the substrate and bridges adjacent LM to establish efficient conductive paths. This interaction benefits from the reactive alloying between AgNPs and LM, where the LM infiltrates the gaps among AgNPs, forming a distinctive LM-Ag alloy layer that uniformly coats the surface of TPU fibers. As anticipated, the unique three-dimensional (3D) interconnected LM-Ag conductive network remains intact during stretching, ensuring strain-invariant conductivity. The fabricated TPU/PDA/Ag-LM fiber membrane demonstrates exceptional EMI shielding effectiveness (SE) of 77.4 dB within the frequency range of 8.2–12.8 GHz and maintains an excellent EMI SE of 37.2 dB under extensive tensile deformation of 300%. Furthermore, the TPU/PDA/Ag-LM fiber membrane shows remarkable mechanical properties and stable Joule heating performance even under significant stretching.
中文翻译:
用于可穿戴电磁干扰织物的银纳米粒子桥接液态金属
可拉伸导电纤维对于可穿戴电子纺织品的发展至关重要。然而,由于电子传输中断,它们的导电性在拉伸时急剧下降,因此出现了一个重大挑战。用软液态金属 (LM) 包覆纤维已成为一种很有前途的解决方案。尽管如此,仍然迫切需要开发增强 LM 对衬底的粘附力,同时促进高效电子传输途径的方法。本研究展示了一种用于制造热塑性聚氨酯/聚多巴胺/银-LM (TPU/PDA/Ag-LM) 纤维膜的新型 Ag-LM 导电网络策略。该膜具有出色的可拉伸电磁干扰 (EMI) 屏蔽性能,通过简单的静电纺丝、化学沉积以及 LM 涂层和活化生产。TPU/PDA/Ag 纤维膜最初是通过聚多巴胺辅助在静电纺丝 TPU 纤维上沉积纳米银 (AgNP) 制备的。TPU/PDA 纤维表面存在 AgNP 增强了 LM 与基材的粘附力,并桥接相邻的 LM 以建立有效的导电路径。这种相互作用受益于 AgNP 和 LM 之间的反应合金化,其中 LM 渗透到 AgNP 之间的间隙中,形成独特的 LM-Ag 合金层,均匀地覆盖在 TPU 纤维的表面。正如预期的那样,独特的三维 (3D) 互连 LM-Ag 导电网络在拉伸过程中保持完整,确保应变不变的导电性。制造的 TPU/PDA/Ag-LM 纤维膜在 8.2–12.8 GHz 的频率范围内表现出 77.4 dB 的出色 EMI 屏蔽效果 (SE),并在 300% 的广泛拉伸变形下保持 37.2 dB 的出色 EMI SE。 此外,即使在显着拉伸下,TPU/PDA/Ag-LM 纤维膜也显示出卓越的机械性能和稳定的焦耳热性能。
更新日期:2024-10-24
中文翻译:
用于可穿戴电磁干扰织物的银纳米粒子桥接液态金属
可拉伸导电纤维对于可穿戴电子纺织品的发展至关重要。然而,由于电子传输中断,它们的导电性在拉伸时急剧下降,因此出现了一个重大挑战。用软液态金属 (LM) 包覆纤维已成为一种很有前途的解决方案。尽管如此,仍然迫切需要开发增强 LM 对衬底的粘附力,同时促进高效电子传输途径的方法。本研究展示了一种用于制造热塑性聚氨酯/聚多巴胺/银-LM (TPU/PDA/Ag-LM) 纤维膜的新型 Ag-LM 导电网络策略。该膜具有出色的可拉伸电磁干扰 (EMI) 屏蔽性能,通过简单的静电纺丝、化学沉积以及 LM 涂层和活化生产。TPU/PDA/Ag 纤维膜最初是通过聚多巴胺辅助在静电纺丝 TPU 纤维上沉积纳米银 (AgNP) 制备的。TPU/PDA 纤维表面存在 AgNP 增强了 LM 与基材的粘附力,并桥接相邻的 LM 以建立有效的导电路径。这种相互作用受益于 AgNP 和 LM 之间的反应合金化,其中 LM 渗透到 AgNP 之间的间隙中,形成独特的 LM-Ag 合金层,均匀地覆盖在 TPU 纤维的表面。正如预期的那样,独特的三维 (3D) 互连 LM-Ag 导电网络在拉伸过程中保持完整,确保应变不变的导电性。制造的 TPU/PDA/Ag-LM 纤维膜在 8.2–12.8 GHz 的频率范围内表现出 77.4 dB 的出色 EMI 屏蔽效果 (SE),并在 300% 的广泛拉伸变形下保持 37.2 dB 的出色 EMI SE。 此外,即使在显着拉伸下,TPU/PDA/Ag-LM 纤维膜也显示出卓越的机械性能和稳定的焦耳热性能。