npj Parkinson's Disease ( IF 6.7 ) Pub Date : 2024-10-24 , DOI: 10.1038/s41531-024-00815-x Veronica A. Wang, Scott Delaney, Lauren E. Flynn, Brad A. Racette, Gary W. Miller, Danielle Braun, Antonella Zanobetti, Daniel Mork
We examined the effect of annual exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3), on the rate of first hospitalization with a PD-related diagnosis (hospitalization with PD) among Medicare Fee-for-Service beneficiaries (2001-2016). Machine learning-derived annual air pollution concentrations were linked to residential ZIP codes. For each exposure, we fitted four models: 1) traditional outcome stratification, 2) marginal structural, 3) doubly robust, and 4) generalized propensity score matching Poisson regression models, adjusted for sociodemographic and meteorological confounders and long-term trends. Among 49,121,026 beneficiaries, incidence rate ratios of 1.08 (95% CI: 1.07, 1.10), 1.07 (95% CI: 1.05, 1.08), and 1.03 (95% CI: 1.02, 1.05) for an interquartile range increase in PM2.5 (3.72 µg/m3), NO2 (13.84 ppb), and O3 (10.09 ppb), respectively, were estimated from doubly robust models. Results were similar across modeling approaches. In this nationwide study, higher air pollution exposure increased the rate of hospitalizations with PD.
中文翻译:
空气污染对全国 Medicare 受益人帕金森病住院率的影响
我们研究了每年暴露于细颗粒物 (PM2.5)、二氧化氮 (NO2) 和臭氧 (O3) 对医疗保险按服务收费受益人 (2001-2016) 首次住院诊断为 PD 相关诊断(因 PD 住院)的影响。机器学习得出的年度空气污染浓度与住宅邮政编码相关联。对于每次曝光,我们拟合了四个模型:1) 传统结果分层,2) 边缘结构,3) 双重稳健,以及 4) 匹配泊松回归模型的广义倾向评分,针对社会人口学和气象混杂因素以及长期趋势进行了调整。在 49,121,026 名受益人中,PM2.5 (3.72 μg/m3)、NO2 (13.84 ppb) 和 O3 (10.09 ppb) 的四分位距增加的发生率比分别为 1.08(95% CI:1.07、1.10)、1.07(95% CI:1.05、1.08)和 1.03(95% CI:1.02,1.05)分别是从双重稳健模型估计的。不同建模方法的结果相似。在这项全国性研究中,较高的空气污染暴露量会增加 PD 住院率。