当前位置:
X-MOL 学术
›
Inorg. Chem. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosted aluminum storage performance by d–p orbital modulation in zinc selenide with manganese element dopants
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2024-10-24 , DOI: 10.1039/d4qi02173h Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du, Jianxin Zhang
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2024-10-24 , DOI: 10.1039/d4qi02173h Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du, Jianxin Zhang
Transition metal chalcogenides (TMCs) are extensively employed as cathode materials for rechargeable aluminum batteries (RABs) due to their high theoretical specific capacity and voltage plateau. Although promising, practical applications are hindered by challenges such as inferior structural stability, slow reaction kinetics, and inadequate electronic conductivity. Herein, Mn-ion doping engineering and g-C3N4 etched porous carbon frameworks (Mn-ZnSe@CNPC) were integrated to synergistically enhance the electrochemical properties of ZnSe. Through modulating the d- and p-band centers and regulating electronic interactions, Mn-ion doping enhances adsorption for solvent groups and reduces electron transfer energy barriers, resulting in Mn-ZnSe@CNPC cathodes with high redox activity and fast reaction kinetics. In addition, the porous carbon nanocages act as support frameworks, preventing the agglomeration of ZnSe nanoparticles and providing ample ion transport channels, thus addressing issues related to poor cyclability and slow electrochemical kinetics in RABs. Benefiting from the d–p orbital modulation strategy and structural advantages, the tailored Mn-ZnSe@CNPC cathode exhibits boosted electrochemical performance and excellent stability.
中文翻译:
通过使用锰元素掺杂剂在硒化锌中进行 d-p 轨道调制来提高铝存储性能
过渡金属硫属化物 (TMC) 由于其高理论比容量和电压平台而被广泛用作可充电铝电池 (LAB) 的正极材料。尽管前景广阔,但实际应用受到结构稳定性差、反应动力学缓慢和电子导电性不足等挑战的阻碍。本文将 Mn-ion 掺杂工程与 g-C3N4 刻蚀多孔碳框架 (Mn-ZnSe@CNPC) 相结合,协同增强 ZnSe 的电化学性能。通过调节 d 波段和 p 波段中心并调节电子相互作用,Mn-离子掺杂增强了对溶剂基团的吸附并减少电子转移能垒,从而产生了具有高氧化还原活性和快速反应动力学的 Mn-ZnSe@CNPC 阴极。此外,多孔碳纳米笼充当支撑框架,防止 ZnSe 纳米颗粒团聚并提供充足的离子传输通道,从而解决 RABs 中与循环性差和电化学动力学缓慢相关的问题。得益于 d-p 轨道调制策略和结构优势,定制的 Mn-ZnSe@CNPC 阴极表现出增强的电化学性能和出色的稳定性。
更新日期:2024-10-24
中文翻译:
通过使用锰元素掺杂剂在硒化锌中进行 d-p 轨道调制来提高铝存储性能
过渡金属硫属化物 (TMC) 由于其高理论比容量和电压平台而被广泛用作可充电铝电池 (LAB) 的正极材料。尽管前景广阔,但实际应用受到结构稳定性差、反应动力学缓慢和电子导电性不足等挑战的阻碍。本文将 Mn-ion 掺杂工程与 g-C3N4 刻蚀多孔碳框架 (Mn-ZnSe@CNPC) 相结合,协同增强 ZnSe 的电化学性能。通过调节 d 波段和 p 波段中心并调节电子相互作用,Mn-离子掺杂增强了对溶剂基团的吸附并减少电子转移能垒,从而产生了具有高氧化还原活性和快速反应动力学的 Mn-ZnSe@CNPC 阴极。此外,多孔碳纳米笼充当支撑框架,防止 ZnSe 纳米颗粒团聚并提供充足的离子传输通道,从而解决 RABs 中与循环性差和电化学动力学缓慢相关的问题。得益于 d-p 轨道调制策略和结构优势,定制的 Mn-ZnSe@CNPC 阴极表现出增强的电化学性能和出色的稳定性。