Nature Medicine ( IF 58.7 ) Pub Date : 2024-10-24 , DOI: 10.1038/s41591-024-03299-7 Daniel E. Coral, Femke Smit, Ali Farzaneh, Alexander Gieswinkel, Juan Fernandez Tajes, Thomas Sparsø, Carl Delfin, Pierre Bauvain, Kan Wang, Marinella Temprosa, Diederik De Cock, Jordi Blanch, José Manuel Fernández-Real, Rafael Ramos, M. Kamran Ikram, Maria F. Gomez, Maryam Kavousi, Marina Panova-Noeva, Philipp S. Wild, Carla van der Kallen, Michiel Adriaens, Marleen van Greevenbroek, Ilja Arts, Carel Le Roux, Fariba Ahmadizar, Timothy M. Frayling, Giuseppe N. Giordano, Ewan R. Pearson, Paul W. Franks
Obesity and cardiometabolic disease often, but not always, coincide. Distinguishing subpopulations within which cardiometabolic risk diverges from the risk expected for a given body mass index (BMI) may facilitate precision prevention of cardiometabolic diseases. Accordingly, we performed unsupervised clustering in four European population-based cohorts (N ≈ 173,000). We detected five discordant profiles consisting of individuals with cardiometabolic biomarkers higher or lower than expected given their BMI, which generally increases disease risk, in total representing ~20% of the total population. Persons with discordant profiles differed from concordant individuals in prevalence and future risk of major adverse cardiovascular events (MACE) and type 2 diabetes. Subtle BMI-discordances in biomarkers affected disease risk. For instance, a 10% higher probability of having a discordant lipid profile was associated with a 5% higher risk of MACE (hazard ratio in women 1.05, 95% confidence interval 1.03, 1.06, P = 4.19 × 10−10; hazard ratio in men 1.05, 95% confidence interval 1.04, 1.06, P = 9.33 × 10−14). Multivariate prediction models for MACE and type 2 diabetes performed better when incorporating discordant profile information (likelihood ratio test P < 0.001). This enhancement represents an additional net benefit of 4−15 additional correct interventions and 37−135 additional unnecessary interventions correctly avoided for every 10,000 individuals tested.
中文翻译:
用于精确预测心脏代谢疾病的肥胖亚分类
肥胖和心脏代谢疾病经常(但并非总是)同时发生。区分心脏代谢风险与给定体重指数 (BMI) 的预期风险不同的亚群可能有助于心脏代谢疾病的精确预防。因此,我们在四个基于欧洲人群的队列 (N ≈ 173,000) 中进行了无监督聚类。我们检测到五种不一致的特征,包括心脏代谢生物标志物高于或低于预期的个体,因为他们的 BMI 通常会增加疾病风险,总共占总人口的 ~20%。特征不一致的人与一致的人在主要不良心血管事件 (MACE) 和 2 型糖尿病的患病率和未来风险方面有所不同。生物标志物中细微的 BMI 不一致影响了疾病风险。例如,血脂水平不一致的概率高 10% 与 MACE 风险高 5% 相关(女性风险比 1.05,95% 置信区间 1.03、1.06,P = 4.19 × 10-10;男性风险比 1.05,95% 置信区间 1.04、1.06,P = 9.33 × 10-14)。MACE 和 2 型糖尿病的多变量预测模型在纳入不一致的概况信息时表现更好 (似然比检验 P < 0.001)。这种增强代表了每 10,000 名测试个体正确避免 4-15 次额外正确干预和 37-135 次额外不必要干预的额外净收益。